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ABSTRACT

This report documents the theory which underlies the SCREEN program, a computer
program designed to evaluate acoustic detection and localization performance of an
anti-submarine protective force about a Naval task force or other shipping. A companion
user's manual for SCREEN supplements this report. The measures used to evaluate
the SCREEN performance are: cumulative detection probability against specific target
approach tracks and cumulative localization pqrformance against these same tracks.
In addition to cumulative measures, 'tsnapshot' detection and localization measures are
also computed, which provide an indication of the detection and localization coverage of
the defensive screen at a specified time.

'The SCREEN program operates on data files which contain moderately detailed
descriptions of the acoustic environment (propagation, noise, etc. ), the sensor
parameters and tactics, and the screen penetrator (target) parameters and tactics.
These descriptions include both deterministic and stochastic parameters. The data
file contents can be created, altered, and displayed by the user under program control.
Once the data files have been created, subsequent use of SCREEN is straightforward
and concise, involving user-selectable progrm ipons and. machine prompts for input.

-'The underlying detection process is a modified (X, O.)-jump process. The target
process is a modified Integrated Ornstein-Uhlenbeck (IOU) process. The basic
localization algorithm is an "Information Flow" Kalman filter. Bayesian updating
techniques are used to evaluate search effort, along lines similar to techniques found
in computer assisted search programs which are currently being implemented in the Fleet.
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PREFACE

This is a report to the Chief of Naval Operations (Op-961) under Contract No.
N00014-76-C-0811, which gives the theoretical basis for the algorithms and procedures
contained in the SCREEN program, a computer program designed to evaluate acoustic
detection and localization performance of an anti-submarine protective force or other
shipping. This is a companion vAume to reference (a], the user's manual for the
SCREEN program.

The theory of SCREEN incorporates the results of several lines of analysis
developed largely by this firm over recent years. These lines include cumulative
detection probability and other acoustic detection modeling, Kalman filtering and
other localization techniques, stochastic target motion models, and the methodology
of computer assisted search.

The acoustic detection model is based on algorithms for cumulative detection
probability (cdp) involving the (A,o.)-jump process that have a long history of development
beginning with reference (b] in 1964. A commentary on the validity of this line of
model development is found in reference (c]. In Chapter II of this report, the present
theory extends the development to the case of a randomly sampled jump process.

Models for target localization and target motion analysis (TMA) also have a long
history of development. The SCREEN program uses Kalman filter techniques developed
in reference [g], based on the "information flow" approach to the Kalman iteration
technique. This work is representative of a number of generically similar approaches
to TMA and should provide a reasonable expression of expected localization performance
of bearings-only and active sensors. The present theory, Chapter M, extends the
basic Kalman iteration to include correlated observations, which is an important
improvement over previous algorithms.

The SCREEN program evaluates screen performance against targets that follow
penetration strategies as dictated by various target files created by the SCREEN user.
Each target file describes in essence a target diffusion process which is a discrete-
time analog of the Integrated Ornstein-Uhlenbeck (IOU) process, references [d] and [e].
The IOU process, and other processes for target motion have received substantial
study in recent years, see for example reference [m]. The present work, described
in Chapter 1I1, is related in reference [q] to this earlier work. Recent work on the
statistical analysis of these stochastic processes is reported in reference [y].
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The methodology of computer-assisted search (CAS) also has a long history, and
since the SCREEN program is representative of one line of CAS development, an
extended discussion of its development seems merited at this point.

The use of computers in planning search effort goes back to the H-Bomb search
off of Palomares, Spain in 1966, and a subsequent extension of the technique in the
Scorpion seatch in 1968 (see reference (u]). This early methodlogy was further
developed and used in the first real-time computer program for Bayesian search
planning, the U. S. Coast Guard CASP program (reference [x]). This has been
operational since 1972.

The essential innovative features of the early search programs were the inclusion
of target "scenarios" to define prior target distributions and move them through time,
and Bayesian updating to show the effects of search effort as an aid in subsequent
search planning. These programs are Monte Carlo simulations and have subsequently
been developed into a line of standardized CAS programs whost development is sponsored
by ONR.

In 1975,as a direct precursor of SCREEN. Dr. T. L. Corvin, then attached to the
COMSUBPAC staff, devised an analytic search program (ASP) for use on a desktop
calculator. The ASP program utilizes target scenarios, described as stochastic
diffusion processes, and evaluates search against them in an analytic fashion. Useful
features of the ASP program which are retained in SCR EEN include the capability to
operate the program in real time and to modify the program to account for positive

contact information, remove such contact information, and adjust search tactics in
real time for actual, versus planned, operations. The principal documentation of these
programs is in reference [v].

The analytic search methodology of SCREEN is an outgrowth of Corwin's work.
Work on SCREEN commenced in 1976 under the initial sponsorship of CAPT W. Mitchell
of Op-96. The initial structure was developed by Dr. Bossard and the first working
programs were produced in early 1977 with the substantial assistance of Dr. W. H.
Barker. The first working program provided only detection performance measures.
These were subsequently extended to include localization measures in the summer of
1978.

In mid-1978, the SCREEN program was used for the first time as an important
analysis tool in the Submarine Alternatives Study (SAS) which was conducted by
CNO (Op-02) at the request of the Secretary of the Navy and led by CAPT James
Van Metre. In that study, the SCREEN program has been utilized extensively to
analyze alternative U. S. submarine designs in the Anti-Surface Warfare (ASUW) and
direct support roles. In addition to this use of SCREEN, it was used in various short
analyses by CNO (Op-96) in the winter of 1978-1979. Based on these uses, many
improvements have been incorporated into the program and increased confidence in its
utility and general model accuracy has been gained.
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A number of analysts, in addition to the authors of the present report, were

involved in the development and testing of the SCREEN program. The principal
additional contributors were: Dr. W. H. Barker (1976-1977), Dr. L. K. Arnold
(winter 1977-1978), and Dr. B. E. Scranton (since Fall, 1978). Mr. B. M.
McDaniel was extensively involved in programming aspects during this period of
time and Mr. R. L. Andersson developed a number of computer "bookkeeping"
routines useful to the program. Dr. Scranton was responsible for much of the testing
and improvements to SCREEN included during the SAS and Op-96 analyses noted
above. Dr. D. P. Kierstead also provided a useful critique of the program algorithms.

We wish to acknowledge the excellent support and cooperation of Op-961 from
successively CAPT William Mitchell, USN (ret.), Mr. Robert A. Hallex, and most
recently CAPT Raymond Wyatt, USN. Without their continuing support and
constructive help, this project would never have achieved the present state of
development. We wish to also acknowledge the support of CAPT Van Metre and of
Dr. David Stanford of Science Applications, Incorporated, who sponsored the use
of the SCREEN program in the recent Submarine Alternatives Study.
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SUMMARY

This report gives the theorical basis for the algorithms used in the SCREEN
program. This program was developed for the Chief of Naval Operations (Op-9 6 1)
and designed to evaluate the acoustic detection and localization performance of an
anti-submarine protective force about high-value shipping in a Naval convoy or task
force scenario.

The ultimate use of the SCREEN program is in the assessment of alternative ASW
designs. To do such an analysis properly, it is necessary to display enough detail to
show the effect of proposed design changes. It is intended that SCREEN provide
adequate detail for such assessment, without being overweighted with too much detail.

The screen performance measufei encompass both detection and localization.
Performance is assessed against various opposing target strategies. Although the
program is designed primarily for use in CNO analyses, the program design also allows
for interactive use in a real time situation. Such a use would require the services of
a fairly powerful computer--more capable than is generally available at sea at the
present time. Work to modularize SCREEN and thus reduce the computer requirements
is in progress.

This is one of two reports on the SCREEN program. The present volume discusses
the theoretical aspects of the program but does not enter into the details of its use.
The second volume, reference (a], is a user's manual describing the actual operation
of the SCREEN program.

The first chapter gives a general introduction to the type of problems that SCREEN
addresses. In addition, this chapter attempts to show the place of SCREEN in the
spectrum of similar types of analyses. Chapter II discusses the definition of a screen
formation, describes what is involved in defining a sensor and sensor platform, and then
turns to a description of the detection process assumed in the model. Chapter III
discusses the localization measures developed for the SCREEN program and shows how
they are related to a classical Kalman filter target motion analysis. The final chapter
turns to the target's screen penetration strategy, and describes how the target tactics
are modeled and how they can be modified to yield a flexible capability in the SCREEN
program for designing a broad class of target strategies.
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Each chapter refers to appendices which provide various background material as
well as calculations of a more detailed nature that would disrupt the flow of the text

but are required for a full understanding of the theory. A glossary is
included at the end of the report.

In the remainder of the summary, we will briefly discuss where the SCREEN program
fits in Navy analyses, and then briefly address sensors, the detection algorithms, the

localization process, and the target strategies.

The Scope of SCREEN Analyses

The level of detail in the SCREEN program places it somewhere between most
of the analyses of screen formations performed .in the past, and the detailed modeling
that characterizes engineering or technical descriptions of the various components of

the detection and localization process. The SCREEN program is probably more

detailed than any overall screen evaluation model previously developed. A consequence
of this is that the parameters needed for complete description of the sensors, the
environment, and the targets include quantities usually omitted in similar kinds of
analysis. On the other hand, it should be noted that, for any one of the components
of the SCREEN program, there exist models which carry the level of detail far beyond

the level found in SCREEN.

To pick one example, the SCREEN program assumes that the total signal excess
as observed at the beamformer output of a sensor is describable by a simple process
which involves only two parameters: the standard deviation in the random component

of signal excess and the rate at which independent samples of the signal excess may be

observed. Now, one undoubtedly could consider individual random processes for each

component of the signal excess equation--the target radiated noise, the propagation
medium, the background noise, the signal processor, etc. -- but a model which included
all of these processes would require at least a dozen parameters for its description.
In comparison with such a model, then, the random signal excess process used in

SCREEN appears to be very simple. Further examples of the level of detail found in
SCREEN are given in Chapter I.

Thus, the modeling assumptions made in the SCREEN program represent a
judgment on the part of the developers as to the minimal level of detail required to
reflect the distinctions among the various screen components that the program is

designed to evaluate. In support of these assumptions, we note that the program has

been used heavily in an extended study in the past year and the richness of detail in
the model appears to have been justified; at the same time, the model seemed to be

simple enough to be used without discouraging the participants.

Indeed, the SCREEN program is designed for convenience of operation. All of the

environmental, sensor, and target information is preserved in data files which, once

initialized, can be used repeatedly in different combinations. Moreover, either batch
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or interactive operation is possible. In the usual research task, the batch mode would
be invoked, in which a sensor file, including the tactics for each screen unit throughout
an entire tactical engagement, is specified in advance, together with a predetermined
environment and one or more target files to model penetration tactics. However, at
any time, even when working basically in a batch mode of operation, it is possible to
enter into an interactive mode of operation, in which the penetration scenario is
advanced a few steps at a time, pausing as necessary to make changes in the screen
formation, screen unit tactics or penetrating target strategy. This capability makes it
possible to convert SCREEN into a two-sided game in which the adaptive strategies for
each side are input to the program based on presumed "intelligence" or tactical
assessment.

SCREEN operates in discrete time with a uniform time step. Essentially, any
input data can be modified aL any program time step, with the subsequent problem
evolution based on the modified data. The data files thus constructed will contain the
total time history of the encounter, and future reference to these files will reflect the
choice of different parameter values for the different time steps in the problem. In
this way, complex screen formations (including detailed tactics for each platform) may
be developed and then reused in subsequent analyses.

There are essentially two types of sensors modeled by SCREEN: active and passive.
Active sensors provide both range and bearing information whereas passive sensors
provide only bearing information. Omnidirectional sensors are modeled by equating
them to directional sensors with a large bearing standard deviation. Line arrays which
give ambiguous bearings (the correct bearing and its reflection about the array axis)
are also modeled as a special type of passive sensor.

A sensor is assumed to detect a target by accumulating the signal from the target
over a period of time controlled by a parameter called the integration time. Sensors
are assumed to scan azimuthally over their coverage region at an average rate determined
by the scan time. The scan mechanism is random rather than systematic so that it
will not have a regular period that could be exploited by a target. During an encounter,
the performance of a sensor is degraded by an availability factor which is a measure of
the likelihood that the sensor is operable during the engagement.

A screen formation consists of sensors placed on sensor platforms which are in
turn positioned to protect high-value units (HVUs) against attack by enemy submarines.
The term "sensor" includes everything--the array, beamformer, signal processing
and display equipment--directed toward detecting, classifying, and localizing a target
based on a particular narrowband tonal, broadband noise level or active echo. Each
different combination of processing gear, sensor and target noise level (a specific tonal,
broadband level, or active echo) is a different "sensor." A sensor platform, or even
a particular sonar, may thus correspond to several screen "sensors."
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Sensors are combined into sensor groups. The formation of groups is under the
user's control. Groups exist for two principal reasons. First, sensors within a group
may behave in a correlated fashion, as determined by a group correlation parameter
(between groups, sensors operate independently). Second, the summary performance
measures may be calculated and displayed for individual groups or for the entire screen;
thus, it is possible to see how various segments of the screen contribute to overall
performance by grouping sensors in different ways.

Screen performance--the depth and quality of the coverage provided by the screen--
depends on the environment, the target penetration tactics (noise levels, speed,
evasive maneuvers, etc. ), and individual sensor performance. The SCREEN program
evaluates screen coverage using short-term, or snapshot coverage diagrams and
longer-term, or cumulative, detection and localization measures, the latter applied
against specific target penetration strategies. Maps of the posterior target distribution
(showing target distribution given no detection by the screen) can also be displayed.
These SCREEN performance measures, on which we will elaborate momentarily,
apply to the specific environments, sensor line-ups, and screen placements as declared
during the program operation. Generally, both detection and localization performance
measures are computed individually for each sensor in the screen, and then combined
to yield screen performance measures.

The Detection Model

The starting point in the detection performance evaluation is the classical sonar
equation for passive or active sensors. The sonar equation determines the mean
signal excess evaluated at the signal processing equipment of the specific sensor. This
determination involves parameters derived from the environmental data, the sensor
files, and the target files, including the target radiated noise level (or target strength
in the case of active sonars), the propagation loss between the target and sensor, the
ambient noise, interference from radiated noise by other screen units and HVUs, self-
noise, recognition differential, etc. The sonar equation as used in SCREEN is discussed
in Appendix A.

The actual detection probability evaluated for each sensor depends on the mean
signal excess, as determined from the sonar equation, and five additional parameters
that characterize the sonar: (1) the sensor integration time; (2) the sensor scan time;
(3) the sensor availability; (4) the signal excess standard deviation; and (5) the signal
excess relaxation rate. The use of these five parameters will now be described briefly.

Each sensor is assumed to declare detections based on the accumulation of signal
over time, by a process in which the "old" signal is weighted and summed with the
current signal. The specific detection function, 9, and weighting scheme assumed is
as follows (see text equation (11-1) of Chapter II and ensuing discussion):
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f t (1s(8)+iN(s))dWt(s)

E[f t IN(s) dWt(s)

where

Is(s) = intensity of target signal of the beamformer output

IN(s) = intensity of interfering noise at the beamformer output

Wt(s) = historical weight function,

and E[.] denotes expected value. The numerator in (S-1) is the total received weighted
signal. The denominator is the expected background noise. The weight function used
in SCREEN corresponds to "exponential decay" and is given by:

Wt(s) = exp[-(t-s)/W], (S-2)

where w is the sensor integration time mentioned above. The integration time can be
viewed as the average time window over which signal history is accumulated.

The snapshot detection probability for a sensor at time t, p(t), is a function of the
expected value of _, the recognition differential RD for the sensor, and the signal
excess standard deviation a mentioned above. Its defintion is:

p(t) fE[!(t)] n(y;RD,o' 2)dy (S-3)

where n(. ;I, M) denotes the Gaussian density function with mean p and covariance matrix
E--see equation (H-1) in Appendix H. Because of the integration over the past signal
history, the snapshot probability at time t depends in theory on the target and sensor
parameters at all times up to t. However, it is usually considered that the integration
time w is small compared with the time span of the total engagement, so that for
practical purposes, p(t) depends on the behavior of sensor and target only in the
immediate vicinity of time t; hence, the term "snapshot," which is intended to convey
the idea of a short time interval (a "glimpse") around time t. Snapshot probabilities
are distinguished from cumulative probabilities in that the latter involve longer-term
time correlations.

,ciii
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Snapshot probability calculations are the basis for "snapshot coverage maps"
which show the coverage area about a sensor, a sensor group, or the entire screen.
These maps provide a convenient way to show the performance of individual sensors,
and can be the basis of a rough initial placement of screen sensors to provide uniform
coverage about the HVUs.

The cumulative detection probability (cdp) for a sensor against a specific
penetrating target track is computed using the discrete (X, a) jump process to model
the random signal excess process, i. e., the random component of CJ. This process,
originally proposed in the ASW context by J. D. Kettelle in 1959, is described in
references [b] and [c] as well as in Chapter II. In this process, samples of the random
component of g at two times t, and t 2 > t, are either completely correlated (with
probability exp-[X (t2 -tj) or completely independent (with probability 1-exp[-X (t2 -tl)]).
The relaxation rate X is the expected number of independent samples per hour. The
standard deviation of the distribution from which the samples are drawn is a, the
signal excess standard deviation mentioned in connection with equation (S-3).

The random process used in SCREEN for cdp calculations carries the jump process
one step farther than in references [b] and (c] by including a sampling rate 7r based
on the sensor scan time r. The concept behind scan time is the notion that the sonar
operates somewhat like a searchlight sweeping through its azimuthal coverage area.
The scan time is the mean time between successive looks at a given portion of the
coverage area. Each look is assumed to be adequate to give a detection opportunity if
one exists. The relationship between scan time r and the sampling probability 7r is:

?r = exp(- At/r), (S-4)

where At is the length of the program's uniform time step. (We remark that the
theory allows 7r to vary with the time step, which would be the case if, for example,
r did. ) Equation (S-4) expresses the assumption that the scan process is completely
random, in contrast to a systematic search. At each discrete sample time, an
independent sample of the scan process is taken to determine whether a sample of the
signal excess process occurs.

The equations for computing cdp for this "jump process with random sampling" are
fairly complicated, although computer implementation is quite straightforward. The
equations are given in Appendix B.

Finally, the senbor availability Pa is the probability that the given sensor is
operating during the encounter. The concept of availability is intended to cover such
matters as equipment failure and repair, and thus to reflect equipment reliability.
It is assumed that the cycle for equipment "down time" is long compared to that of a
tactical engagement. Hence, the probability Pa is used to reduce cumulative (as opposed
to snapshot) probabilities to reflect these events.

xiv



The Localization Model

Chapter III develops the localization model used in SCREEN. The localization

measures are based on target motion analysis techniques involving the "information

flow" Kalman filter. These techniques are described in references [g], [h]. and [11,

as well as in Chapter III. The basic feature of the approach is to relate the target
state vector X and its covariance matrix F = Var(X) to an information matrix J and

an information vector Xvia the relations:

J= P-1 , X= P- 1X. (S-5a)

or, equivalently,

P = ,X ".  (S-5b)

Working in the information domain--i. e., with d and X'as opposed to X and F--has
attractive computational features most notably that information is "additive:" if prior
information quantities d 0 and J0 are constructed from prior mean X 0 and covariance

P0 by (S-5a)and information quantities (q , an) are constructed analogously for each
of m independent observations against the prior distribution, then the posterior mean

and covariance are given by (S-5b), where

S+ Z n' (S-6a)

m
nl

n+ (S- 6b)

In case the observations are correlated, this formulation must be modified in

accordance with reference [1]. The essential change is that to each new observation

a "net information gain" is determined and added to current information, so that, e. g.,
equation (S-6a) takes the form

m-1
e jT + X J n, n+ 1" (S-7)

n= 1
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If the observations are, in fact, independent, then "yn n4- 1 is just P'Y 1 as per
equation (S-6a). In fact, Jn n+1 involves the same quantities that form IV, and

,o-1; of course, it also is a'function of the correlation between the nth and (n+ 1)th

observations. Details behind equations (S-5), (S-6), and (S-7) appear in Chapter III.

The information gain quantities are computed for each sensor, according to its
type. Both passive and active sensors provide bearing information. The bearing
process is a (X, a) jump process (such as is defined for the detection model) whose
parameters are a function of signal-to-noise ratio (SNR) and the sensor's beamwidth
in the direction of the target. These quantities are part of the sensor's description.
The process is assumed to be unbiased--i. e. , the true bearing is the mean--and to
have a correlation structure of the form required for the use of equation (S-7).
Active sensors provide bearing and range information. The range process is also
an unbiassed jump process whose parameters are functions of SNR. In addition, the
standard deviation of the process is proportional to the true range. Of course, it is
assumed to have the required correlation structure. The construction of the
information gain quantities 9n, n+ 1 from these data is detailed in Appendix E.

After the quantities ' 9 n n+1 have been computed and J obtained by equation (S-7),
the resulting posterior covariance matrix P may be obtained by equation (S-5b). An
ideal localization measure would be obtained by taking the average of this covariance
matrix over all possible combinations of screen unit detections; that is to say, an
expected covariance matrix. As this involves an almost prohibitively cumbersome
computational process, the SCREEN model employs the following substitute.

Let p(n) be the probability that observation n occurs. (This will, in practice, be
the product of the snapshot probability, equation (S-3), and the sampling probability,
equation (S-4.) Then define "expected" information by

A m-i1
S 0 +  p (n+1) t-n,n+1' (S-8)

A

and then define the "expected" covariance matrix P by invoking equation (S-5b) formally.
The quotation marks about the word "expected" refer to the fact that and f are not
actual probabilistic expectations--see the discussion in Chapter II. The matrix
serves as the basis for the SCREEN localization measures. Although it is not the
true expected covariance matrix, it is easier to obtain algorithmically and, at the
same time, is felt to provide a useful measure of screen localization.

xvi
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The Target Motion Model

The target motion model in SCREEN is used to develop sample screen penetration

tracks which are used in turn to determine cumulative sensor performance measures.

The model in fact allows the program user to define several target approach strategies.
A general (cumulative) performance measure may be obtained by averaging measures

of performance against several such strategies.

The idea behind consideration of several approach strategies is the representation

of the full (or as full as possible) spectrum of penetrator tactics against the screen
being analyzed. Of course, the tactics followed by a target during an approach depend

on a number of factors, such as his position relative to the base task force track, his

operating noise characteristics, his degree of knowledge of the screen unit positions

and base track, and his assessment of his own vulnerability and the screen's protective

capability. In most cases, due consideration of these factors results in a limited number

of viable approach strategies, which may vary in sophistication from a "damn-the-
torpedoes" flank-speed intercept course to a cautious approach that attempts to detect

and evade screen units. Generally speaking, only a few carefully-selected such

strategies are considered in an analysis using SCREEN, rather than a large number of

arbitrary approach strategies.

A given approach strategy, as modeled in SCREEN, reflects assumptions about
penetrator's motion as perceived by the screen. From an analytical viewpoint
(the viewpoint of the program), these assumptions include:

(i) the initial location distribution of the target when the approach begins;

(ii) the mean and covariance of the target's course-speed distribution,
as a function of time into the approach;

(iii) mean time between independent (random)course and speed selections;

(iv) positive contacts (bearing lines and SPAs) from intelligence sources
outside the screen (these will be called "posits" in the sequel); and

(v) marginal constraints which reflect target objectives or restraints on

the target's motion.

The target motion model is designed to encompass these five assumptions.

Each target approach strategy in SCREEN is described by a separate target file.

The strategy is represented and stored in that file as a multivariate Gaussian
distribution for which the state variable Is the position of the target at each time step
throughout a penetrator-screen encounter. Gaussian distributions are used because

of their analytical features. The bulk of the target motion model consists of

techniques used to define and modify the target strategy files--that is, the mean vector

and covariance matrix of the representative Gaussian distribution--in accordance
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with the assumptions (i)-(v) above. The underlying intent is to have these techniques
reflect operationally reasonable parameters and procedures. We will now summarize
the nature of the techniques. Specific details are contained in Chapter IV and
Appendices G, H, I, J, and K.

The mathematical process at the heart of the model is a generalization of the
Ornstein- Uhlenbeck process, which was originally developed to describe Brownian
motion (see references (d] and [e]).' The generalized process, developed for
SCREEN. is reported here for the first time. It is used to describe the target's
velocity and may be described as follows. The target velocity at any time t > 0 is
given by

Vt = Vt + Ct

where Et is a Gaussian random variable with mean 0 and covariance matrix rt; and
there is a nonnegative function p such that

t i(x)dx 0

for all t, and if s < t, then Es and et have a joint multivariate Gaussian distribution
with cross-covariance given by

CoV( , ) = exp[- t P(x)dxIr s . (S-9)s t s s'

The corresponding position process is, of course, obtained by integration.

The process actually employed by SCREEN involves a discretization of the above
process: a velocity obtains for each time step and is assumed constant between time
steps. The resulting position process is called a Discrete Integrated Ornstein- Uhlenbeck
(DIOU) process. The mean velocity vectors vt at each time step are chosen by the
program user to reflect the basic target approach strategy desired. (The representative
track will thus consist of one or more linear track segments. ) These choices, together
with the chosen initial position and the length of the program time step, determine the
(mean) target positions at each time step during the evolutlon of the penetration.
These positions are the components of the mean vector stored in the corresponding
target file. The covariances among these positions, which comprise the covariance
matrix stored in the file, are derived from equation (S-9) (see text equations (IV-6)).
The (Gaussian) distribution for which these are the moments is called the unconstrained
prior distribution (UPD).
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The UPD alone reflects only the assumptions (i)-(iii) above. Without further
conditioning, the target location distributions would be continually expanding, due to

the contribution of the random velocity. This would not reflect properly either the
target objective of a restricted attack position or other considerations which have

the effect of "focusing" target motion (such as passing between two screen units).
Therefore, marginal constraints and posits (see assumptions (iv) and (v) above) are
used to constrain the UPD. The resulting distribution is called the constrained prior

distribution (CPD) if no posits are present; otherwise, the term "modified distribution"
is used.

The incorporation of a constraint (a generic term used in this report for a
marginal constraint on a posit) into the modified distribution has its simplest expression
in the "information domain. " That is, let Yr and CTbe the mean vector and covariance
matrix of the modified distribution--T is the number of time steps beyond 0 over which
the penetration strategy is studied; C is a (2T) x (2T) matrix--and define corresponding
information quantities in accordance with equation (S-5a):

S' =C T 1v" (S-10)
T TT7

Then (analogously to equation (S-6))~to each gonstraint there is made to correspond a
matrix D and vector d so that, if 9T and X denote the information quantities

after incorporation of the constraint,

T= 9T ( )D, (S-11a)

= (+) d. (S-11b)

Since a constraint will generally pertain to a given time step, the dimensions of D and
d will usually be 2 x 2 and 2 x 1, respectively. The summation (+) in equations (S-11)
means that D and d are to be added to the submatrices of JT and X respectively
corresponding to the time step to which the constraint pertains. (Appendix G contains
a more detailed definition of the (+) operation.)

The exact forms of D and d depend on the nature of the constraint involved.
Chapter IV presents and discusses these forms in detail. The "additivity of
information" mentioned above in connection with the localization model also applies

here. One important implication of this is that a constraint may be removed by
subtracting the appropriate D and d from J. and A .
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The post-constraint mean vector T and covariance matrix C1 may be obtained
from #T and OP. by equation (S-5b):

Q^ T
C T ' T ="V (S- 12)

However, in most SCREEN analyses, T will be so large that the inversion ofe9 1

required by equations (S-12) is computationally impractical. Therefore, the SCREEN
model contains a method, deriving from equations (S-11) and (S-12), whereby the
quantities D and d may be used to obtain C7 andy 7 directly from C7 andy 7 without
inverting a matrix any larger in dimensions than D. (Typically, said matrix will be
2 x 2. ) This method is described by text equations (IV- 12).

Finally, it is desirable from the standpoint of the user to be able to increase
the number of time steps over which the screen analysis is done--which is tantamount
to increasing the dimension of the UPD--even though constraints have already been
incorporated. The SCREEN model is designed so that this is possible without
removing and reapplying the constraints. This feature is particularly handy in
analyses involving the interactive mode, less so in those for which the batch mode is
appropriate.

Ii
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THE THEORY OF SCREEN

CHAPTER 1

THE SCREEN PROGRAM AND ITS USE

This report gives the theoretical basis for the algorithms used in the SCREEN
program, which is a program developed for the Chief of Naval Operations (Op-961),
designed to evaluate acoustic detection and localization performance of an anti-
submarine protective force about high value shipping in a naval convoy or task force
scenario. Such a protective force is often called a screen; hence, the name for the
SCREEN program.

The need for a program such as SCREEN arises in the analysis of alternative
future Navy ship and aircraft weapon system designs, including both the platform itself
and the various weapon system components that it carries. Such designs and design
improvements must compete for their survival not only against one another, but also
against existing systems; furthermore, competition is not confined to a platform type
(e. g., airplane, ship, or submarine), but must include cross-platform comparisons.
Hence, the need exists for an analysis tool which can fairly compare current and
proposed weapon systems, including cross-platform comparisons, and with enough
detail to reflect the important design features. SCREEN is such a tool.

In designing a program such as SCREEN, it is necessary to walk a narrow line
between oversimplification and excessive detail. The pull toward simplification
comes from the desire to make SCR EEN into a tool which is usable by the general
analyst without discouraging complexity. On the other hand, many design improvements

involve technical details which, if literally transliterated into an analysis program,

would swamp the analysis in complexity. The problem is to produce a tool that is not
difficult to use, but which at the same time reflects the important design features of
the weapon systems involved.

The SCREEN program has answered the program design problems by several
means, which are spelled out in some detail in the next section. First, specific
decisions were made to limit the descriptive parameters. Still, a lot of detail remains
which is not normally found in multi-platform analyses. Second, the data preparation
allows the user a large range of flexibility as to the level of detail which he desires to
pursue: it is possible to create data files very quickly with default or constant values,
or they can be constructed in careful detail. Data files, once created, can be used
repeatedly In different analyses, without requiring regeneration. Third, once the
data files have been prepared, they are easily reviewed and corrected: in most cases,
It is possible to verify exactly what the data files say. Fourth, the operation of SCREEN
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is very simple once the basic data files have been established. Most of the program

features exist in a logical structure of program options with a few clear machine prompts

to guide the user in specifying what the program should do.

The remainder of this chapter gives an overview of the SCREEN program.
In the next section, the program parameters are described, and the level of detail of

the program is explained. The final section describes the typical uses of SCREEN.
Chapter II describes screen sensor formations, the detection process, and detection

performance measures. Chapter III treats localization performance measures and

their relation to Kalman filtering target motion analysis techniques. Chapter IV

considers the target motion model and describes how target penetration tactics are

reflected in the SCREEN program. Appendices and notes contain various background

discussions which are too detailed to include in the text. The various notational
conventions employed in this report are summarized in the glossary.

A companion to this volume is the SCREEN User's Manual, reference [a].

There, the actual operation of the SCREEN program is described in detail. Hence,
only those aspects of the program which directly relate to the theory underlying it

will be discussed in this volume.

The Components of SCREEN

In this section, we given an overview of SCRBEEN, designed to present the

general features of the program and the level of detail used. The SCR EEN program

models an encounter between an attacking submarine and the defensive acoustic

screen placed about high value shipping. The study of this type of encounter has been

conducted for many years using many different analysis approaches. SCREEN is

distinguished from similar types of analysis by the level of detail used to describe

the environment, sensor performance, the detection process, the localization process,
and by a target motion model whose assumptions may be modified by the presence of

contact information and assumed attack objectives.

The basic starting point for the detection process is the classic sonar equation.

This is described in detail in Appendix A. The sonar equation, whether for active or

passive sonars, is an expression for the mean or expected signal excess at the output

of the sonar processing equipment. To obtain an accurate expression for this signal

excess quantity, it is necessary to know the level of the emitted signal by the target

or active sonar, the loss encountered during propagation through the ocean medium,

the total degradation at the receiver due to background noise (including self-noise and

other unwanted acoustic interference), and the gain for the processing equipment used.

To express these components accurately requires a detailed description of the total

detection process.
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In past analyses of screen performance, the capability to model these components
of the sonar equation was generally limited by the resources available for the analysis
task. It was usually impossible--due to the time frame or the resources available--
to describe with any accuracy each of these components, and so various approximations
were made in order to focus more detailed effort on the actual purpose of the study in
question. SCREEN attempts to describe these components in greater detail than
previously done in most analyses. Even so, no component of the detection process is
described in "ultimate" detail, because even SCREEN is forced to make simplifying
assumptions. However, SCREEN is felt to be sufficiently accurate in its description
of the components of the sonar equation and of the sensors used in the screen formation,
and the SCREEN detection model is believed to incorporate enough detail to reveal the
salient properties of the detection process.

We will now briefly summarize the level of detail found in the SCREEN program.

The environment. The environment is described* by specifying propagation loss
in tabular form at one* mile intervals out to 120* miles from each sensor. Multiple
propagation loss curves are permitted, corresponding to different frequencies, depths of
operation, etc. The program can store up to ten* distinct propagation loss curves.

If the corresponding sensor is active, a reverberation curve is also described
along with the propagation curve. It is formally similar in appearance to a propagation
loss curve. The reverberation curve corresponds to "total reverberation" and is the
composite effect of surface, bottom, and volume reverberation.

Associated with propagation loss is a value for omnidirectional ambient noise for
the applicable ocean area. Similarly, associated with a reverberation curve is a
corresponding active source level, since the reverberation experienced is a function
of the source level.

In general, one will expect the propagation loss curve and the reverberation curve
for a given sensor to change depending on the target and source depth, frequency of
operation, and the operating area. One does not normally expect the pmpagation loss
or reverberation curves to be smooth or monotone but rather irregular in appearance
due to such things as convergence zones in the case of propagation loss curves and the
various reverberation components in the case of reverberation curves.

The environmental description does not provide explicitly for directional ambient
noise. The directional noise field due to the task force itself is treated separately, as
described below. It is possible to introduce directional ambient noise in a limited
fashion--for example, the vertical directionality can be factored into the propagation
loss curve. In general, though, if directional ambient noise becomes an important
factor in screen performance, then the SCREEN program should be modified to
incorporate this added feature.

Throughout tbts report, the asterisk after a numerical value denotes that the number

value is declared in a FORTRAN parameter statement and can be altered if
necessary at the cost of recompilation.
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Targets. Targets are described in SC13 FEN in terms of generic types of approach

strategy. An intelligent enemy will not barrel straight into its target, particularly if
he has some knowledge of the screen disposition, lie will, instead, choose from
among a variety of screen penetration tactics.

Consider some examples. From a starting position ahead of the screen, a
penetrator may choose to approach directly (a forward approach) or he may instead
choose to skirt around forward screen elements to approach from the flanks or the
rear, He may attempt to pass midway between two active escorts. In the case of
Figure R-1 (see Chapter II), he may attempt to skirt behind the forward submarine
escorts but ahead of the sonobuoy field (assuming he has knowledge of the approximate
location of the various screen elements).

A screen can be tested against a variety of such target penetration strategies, which
are described in the target data files. A target file describes a base strategy about
which a target distribution is placed. The distribution may reflect either the screen's
uncertainty in target strateg' or it may reflect the target's position uncertainty relative
to the screen unit locations. This distribution is basically the subject of Chapter IV.
The actual construction of target data files is deferred to reference [a].

Target radiated noise is expressed as an omnidirectional average value for each
sensor detection mode considered in a particular problem. The directionality of
radiated noise (or active target strength) is not modeled, nor are other matters such
as target depth. These could be inserted in the SCREEN model by moderate reprogramming
if the analysis warrants the necessary effort.

Sensor descriptions. Sensor descriptions are quite detailed and can be divided
roughly into two parts, one addressing detection information and the other addressing
localization information.

Detection. For detection information, a sensor is identified as either being active,
passive, or a passive line array. An active sensor is assumed to provide both range
and bearing information upon detecting a target. A passive sensor is assumed to provide
bearing informiation (although an omnidirectional sensor can be modeled crudely). A
line array is distinguished from other passive sensors by the fact that it provides
ambiguous bearing information; namely, its beam response pattern is such that it
cannot distinguish between a given bearing and its reflection about the array axis. This
fact is primarily used in determining the effect of interfering noise on detection
performance.

The beam pattern of a sensor is described by the single parameter, beamwidth.
The main lobe is a cosine function of the bearing deviation from the center bearing,
scaled to achieve half power (3db down) at the stated beamwidth. Sidelobes are not
modeled except that the reflected beam is modeled for line arrays. The beam pattern
is used to determine the off-axis effect of interfering noise when the beam is pointing
at the target and the interference arrives on the main beam. A more detailed model
would incorporate more detailed beam patterns, including sidelobes.
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The effect of background noise is handled in three separate ways. First, each
sensor is characterized by its ability to discriminate against omnidirectional back-
ground noise. This quantity, the directivity index, is applied against the omnidirectional
ambient noise number that accompanies a propagation loss curve. Second, the
performance of most of the sensors is degraded by noise produced by the sensor platform
itself. This is called self-noise. Self-noise is described in the model by a nominal
value (the mean effective self-noise) together with a contour which shows the change
in self-noise as a function of relative bearing. By means of this contour it is possible
to distinguish, for example, between detection on beams which are aimed away from the
sensor platform and beams which are aimed toward the sensor platform. It should be
noted that the self-noise modeled is the net self-noise after the signal has passed
through the beamformer--i. e., the directivity of the sensor is included. This quantity
is sometimes called LE.

The third component of interfering noise is noise due to other ships in the screen.
Every high value unit and sensor platform is permitted to radiate noise interference
at the frequencies or in the frequency bands of the screen sensors. The model
calculates the net effect at the receiving array of this interfering noise by tracing
the interference through the propagating medium and through the simplified beampattern
of the receiving array described above.

The description of environment, targets, and sensors contained in SCREEN is
not as detailed as could be developed, but it is sufficiently detailed to allow one to
investigate such things as mutual interference, performance in different environments,
the use of mixed detecting modes by the various platforms, etc.

Random signal excess. All the parameters we have described thus far have to do
with the mean signal excess, i. e., the components of the sonar equation. In addition,
there are random fluctuations in the signal excess which must also be described
because they enter heavily into the question of the detection event. The model assumed
for these random fluctuations is the (A, a) jump process in which the signal at an array
is assumed to have a Gaussian random component with standard deviation a which
assumes new independent values at exponentially distributed intervals at the rate X per
hour. This jump process is described in a number of places, for example in references
[b] and [c]. The version used in SCREEN is presented in detail in Chapter II.

The (X, a) jump process is one of the simplest models one can have for random
fluctuations in the signal which takes into account the time correlation in those

fluctuations. It only involves two parameters. Various modeling efforts in the past
have realized that the actual signal process is undoubtedly more complicated than a
simple (X, a) model, although nobody can describe it accurately. In fact, every component
of the sonar equation undoubtedly has its own process and in addition, there is some
degree of correlation along the various processes induced by the common medium, or
other phenomena. Thus, the model chosen for the detection process in the SCREEN
program is relatively simple among the class of models that have been used in the
past to describe that process. Nonetheless, it is believed to be adequate for the
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present purposes of screen analyses. The time may come when it is desired to put
more detail into the stochastic process, but the analyst is cautioned to note that it
is virtually impossible, due to the small data base and the high cost of conducting
operational experiments, to actually estimate more than one or two parameters for
the random process, and so there is some question as to whether greater detail is
merited.

In addition to the individual sensor detection process, one must describe how a
sensor group or sensor scren combines its efforts to accumulate detections. We
will not enter into this here other than to say that a very simple model for correlation
between sensors has been used. a model which is also used in other analyses, notably
recent work on the Pacific coast in describing sonobuoy performance. The reader is
referred to the detailed discussion f this model in Chapter 1I.

Localization. It has been noted by various analysts that evaluating the detection
performance of a screen is not einough: the real need is to describe localization as
Ivell as detection. The motivat;on behind this is that if detection capability becomes
the ultimate measure of effectiveness (MOE), then sensors that are able to detect at
extremely long range but perhaips without performing much localizing, will appear to
be star performers--whereas, in fact, they may provide information that is tactically
unusable in prosecuting a contact.

One of the difficulties in evaluating the localization performance of a screen is that
in the past, localization measures have required extremely detailed descriptions of
detection events and the tactical responses to those events. Basically, the only way
to "really" analyze localizations is by numerous Monte Carlo replications in each of
which the tactical interaction is played and the final result of an encounter is then
summarized. To evaluate localization for a screen over a wide variety of target
penetration tactics (or to develop localization "coverage" maps as described in later
chapters) would require a prohibitive number of Monte Carlo replications in order to
smooth out the normal variations due to the Monte Carlo sampling process itself.

The SCREEN program represents to our knowledge the first attempt to provide a
screen localization measure which avoids excessive computational complexity. This
approach, based on a Kalman filter target motion analysis (TMA) technique, is
described in Chapter III. Because this capability of the program has not yet been
exercised to any extent, it is impossible to say whether the SCREEN approach is the
ultimate answer to localization performance evaluation. However, it does produce
measures which are easily compared and does relate in a crude way the ability of a
screen to localize targets.

To describe the screen localization performance, it is necessary to provide
information about the statistical properties of every sensor, specifically: 1) the
standard deviations in the solution range and/or solution bearing as a function of the
mean signal-to-noise ratio, and 2) information regarding the mean time between
independent bearing and range samples. As remarked before, the attempt has been
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made to keep these statistical parameters as few in number as possible. Those
chosen appear to be the minimum required to obtain a reasonable description of
screen localization performance.

Level of detail: a final comment. It can be seen from the discussion above that

the amount of information required to describe a sensor completely is fairly extensive--
even though it can be at the same time argued that every type of information could
have been expanded in detail to an almost limitless extent. As a companion to the
SCREEN program, it will be necessary to provide standard sensor descriptions to a
level of detail hitherto unknown except in specialized engineering studies. However,
once this information has been collected and compiled, the subsequent use of such
information is quite straightforward; this is the power of the SCREEN program. With
time--and if the SCREEN program is used--it is expected that standard data bases
will be established for the standard SCREEN components and standard environments,
and that these details of analysis can be henceforth taken for granted as the first step
in other SCREEN analyses.

The Uses of SCREEN

In this section, the uses of SCREEN are examined. The discussion begins with
a survey of the types of problems that can be addressed. This is followed by comments
on creation of a defensive screen. Finally, some overall remarks are made on the
possible analyses that can be performed with the SCREEN program.

The classes of problems addressed by SCREEN. The SCREEN program is
nominally designed to aid in the analysis of an ASW defensive screen placed about high
value shipping. However, the program design lends itself to a broader range of
applications.

At one extreme, the SCREEN program can be used to analyze isolated tactical
problems. Examples of these are:

(1) One-on-one engagement. A screen consisting of one sensor platform (possibly
with several sensors) can be the basis for an analysis of a one-on-one
engagement when a sufficiently short time step is chosen so that specific
approach/evasion maneuvers can be modeled for both the sensor platform and
the target. The Kalman filter target motion analysis built into the localization
portion of SCREEN can estimate the refinement of a fire-control solution.
Performance in different environments can be analyzed. The user can
analyze performance in different environments as well as the use of several
sensors simultaneously, including use of active sensors.
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(2) One-on-many engagement. The SCREEN program can assess the performance
in detection/localization by a single platform against multiple simultaneous
targets considering the sensitivity to environment, the effect of relative
bearings holding contact, etc.

(3) Many-on-one, many-on-many engagements. The SCREEN program can also
analyze various tactical engagements between several search platforms
against one or several targets including differing degrees of task force
communications. (This would probably require the interactive rather than
the batch option of SCREEN; the distinction is addressed in a later subsection.)

(4) Use of reactive screen elements. The SCREEN program can examine an
engagement between a reactive screen platform (such as a deck-launched
weapon or search platform) and a target. This would require two separate
runs of SCREEN: one run to model the general task force screen or the
performance of the host platform's search--which is used to generate the
detection and localization opportunities (location and size) for the reactive
forces--and the second run to model the reactive units' performance
(redetection and localization). Undoubtedly, the second run would use a
much tighter time step and spatial resolution than the first run would. This
type of analysis would aid in proper placement of reactive forces within a
screen.

(5) Placement of screen units and modules. The effects of task force noise, the
possibilities for mutual exchange of information, and the placement of
localizing reactive forces can be analyzed. A typical example of this analysis
is placement of a flanking sonobuoy field, taking into consideration the
effect of task force noise interference.

At the opposite extreme, the SCREEN program can assist in analyzing the
performance of a task force in an extended scenario. A Hunter-Killer (HUK) Group
evaluation may extend over days and include a number of environments. The evaluation
of task force transit vulnerability includes different environments which imply different
defensive screen configurations and different attack tactics. The SCREEN program can
be used ashore by fleet staffs to plan such engagements, as well as used on-site in
real time to provide interactive assistance in planning, execution, and assessment.

Designing a screen: background. In the remainder of this section, we will discuss
the thought processes that are involved in designing a defensive screen and how they
interface with the use of SCREEN. Any analysis involving the SCREEN program will
utilize some basics in the screen design and perhaps use the SCR EEN program to
modify the design from time to time.
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A task force ASW screen is primarily designed to counter the likely penetration
tactics of opposing submarines. The opposition presumably has the mission to attack
the high value units in the task force. Possibly, the attack of the escort units them-
selves is a secondary objective. Success for the target may be measured by penetration
to a designated weapon launch region. Success as defined by the screen is to minimize
the likelihood of this event.

Before we discuss the question of what measure of effectiveness the screen should
use in assessing its performance, we note that a real encounter between a defensive
screen and opposing submarines is a two-sided game where each side has partial
information about the other side and each side is operating under certain constraints
that limit its options. Theoretically, optimal screen design should be a solution to
this two-sided game. In practice, however, the solution possibilities are so huge that
no computable solution to the game is possible. Hence, the usual procedure is to
postulate reasonable tactics, evaluate them, and modify them thus searching for
configurations that yield improved performance. This is an inexact science, subject
to errors in application.

The smart target. Usually we assume that the penetrating target has some
information about the screen composition and that it will attempt to evade screen units
to the extent of its knowledge subject to the primary objective of accomplishing its
mission. This being the case, the task of the screen designer is to produce a screen
which is sufficiently nonporous that the anticipated intelligent target will find it
difficult to exploit gaps in coverage. Such gaps might appear, for example, between
an outer screen and an inner screen. The penetrating target could exploit a gap by
skirting around the outer units and then passing ahead into an advantageous position.
Of course, for each modified screen configuration, a new set of inte".igent target
penetration tactics is probable. At some point, small changes in tactics produce
negligible changes in screen configuration and the user considers the screen to be
fixed. It is important to realize, however, that in reality this is a dynamic two-sided
problem and that design of an optimal screen against fixed penetrating tactics may
result in an optimistic assessment of performance when in fact the penetrators may be
able to adapt their tactics. Conversely, the design of optimal penetrator tracks
against a fixed screen configuration may result in an optimistic assessment of the
penetrator t s capability when, in fact, the screen commander may be able to adapt his
tactics.

Operating constraints. In addition to considering the two-sided game with the
target, the design of a screen must take into account various operating constraints.
The next few paragraphs are some examples.

Perhaps the most obvious operating constraint is that the speed of advance
dictated by the PIM (Position and Intended Motion) which the screen defensive units
may be obliged to maintain may not be optimal for their search functions. We do not
wish to discuss the question here, but experience indicates that aircraft carriers (CVs)
do not slow down to give screen units opportunities to search for or prosecute attackers.
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Thus, sometimes sensor platforms must engage in sprint and drift or similar search
tactics which result in incomplete or less than optimal coverage of the search area.
Sometimes the penetrating target submarine can take advantage of these gaps in
coverage, particularly after it detects the noise radiated by the search platform during
the sprint phase.

Other constraints on the screen design include collateral duties of some of the
search units, especially in the case of surface platforms in the inner screen about a
CV. Such screen units may have to perform point defense against cruise missile
attacks and retrieve downed aircraft and pilots lost at sea on top of the usual screen
detection functions. These other duties not only detract from the general search, but
also force the escorts to maintain a position very close to the high radiated noise
of the high value units, which may further degrade their detection performance.

Another common source of constraint are the operating characteristics of the
search units. Helicopters, for example, can maintain sonobuoy fields only within a
limited distance from the launching platform. This is due to the endurance of the
aircraft. This limitation again may result in sonobuoy fields being placed in high
background noise regions and in portions of the search area where their contribution
is less effective.

As a final example, communications requirements may enforce another kind of
constraint on screen units. Direct support submarines are an obvious example of
screen units whose performance may face several limitations because of the
communications requirement. VP aircraft may not be available because of assignment
to communications relay.

Screen effectiveness measures. It has already been indicated that the SCREEN
program contains both detection and localization measures. Historically, analysis of
screens has been restricted almost exclusively to detect ion because it has been
difficult in the past to obtain general localization performance measures apart from
limited simulations. Such simulations can perhaps assess the efficacy of a given fixed
screen but they lack in flexibility. The SCREEN program allows the potential for
evaluating screens from the viewpoint of their localization capability.

The detection and localization capabilities of different types of screen units vary
widely, according to the type of unit. Passive escorts which utilize the towed arrays
frequently are characterized by very long range detection capability. However, the
ability of these sensors to localize the target is often very poor. In addition, the
passive platforms are not necessarily quick-response platforms, and so even if they
could localize the targets, they might not be in a position to launch a weapon.
Other screen elements, such as helicopters using dipping sonar, are extremely
effective in localizing contacts once a detection has been made, but are fairly ineffective
in achieving detections if the search area is very large. Active sonars generally
provide good detection and localization capability but suffer the disadvantage that the
target can almost always hear the active sonar before the sensing platform can detect
the target. Hence, there is the serious possibility that the target may evade active
screen elements.
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A screen well-designed in terms of both detection and localization performance
would place its detecting units so that a target would be localized with high probability

by the time it arrived at its weapons-launch position. If continuous full coverage
is not possible, then at least early warning might enable those platforms which are
better able to react to a contact to position themselves in order to prosecute. This
type of mutual assistance among search units may provide the best overall screen
design. While it is difficult enough to design a static screen if the two-sided game is
allowed, a dynamic screen in which screen units react to their own detections is
probably an order of magnitude more difficult. Such questions lead to challenging and
stimulating analysis.

Real-time vs. batch design. The logical approach to designing a static screen is
with the batch mode of operation of the SCREEN program. Candidate screen designs
can be played against appropriate penetrating tactics and the results analyzed, using
as the measure of performance, for example, the probability of a successful attack
by the penetrating submarine. That is, the screen which minimizes this probability
might be considered the best screen.

In the past, the SCREEN program has also been used in real-time analysis to
plan a dynamic reactive type of screen. In the work of T. L. Corwin at COMSUBPAC
which formed the basis for SCREEN, the programs were used during actual exercises
involving a task force with direct support submarines; this reactive screen design was
the principal application of the early versions of the program. Further remarks along
this line are made in the Preface and on page 14.

Designing penetration tracks. The design of penetration tracks for the targets is,
of course, simply the other side of the two-sided game. The principal parameters
in this design involve the target's understanding of the screen it is trying to penetrate.

In recent analyses of submarine alternatives, the SCREEN program was used to
analyze penetration tactics against screens consisting of both passive and active
screen elements. The considerations involved in the design of target penetration tracks
included such things as:

(1) the relationship between target speed and radiated noise (which, of course,
affected the performance of passive sensors in the screen and the set of
feasible approach tracks);

(2) the requirement imposed on the penetrating submarine to perform a rough

localization of the screen elements in order to design evasive maneuvers;

(3) a total time budget during which the approach to attack had to be achieved;

(4) the distribution of initial arrival from which the task force penetration was
assumed to commence;
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(5) a selection among alternative weapons with attendant launch range
requirements;

(6) a selection among alternative launch positions for a given weapon; and

(7) the ability to maintain sufficient reserve propulsion capacity to escape after
the initial attack (this is primarily applicable to diesel submarines).

This analysis of target penetration tactics was probably more elaborate than would
typically be the case in most screen analyses, but it turned out that the care involved
in target track design was needed to show the true effects on performance of the
differing candidate submarine capabilities. Reference [t] is the summary report of
these analyses.

It should be noted that the target track data designed for SCR EEN use include
uncertainty information in the placement of the target track. This uncertainty
usually reflects the screen's uncertainty as to the target's location on an assumed
approach tactic. It can also reflect the target's assumed uncertainty in the location of
screen units: the placement of his track on a relative motion board about the screen
is subject to error due to his uncertainty concerning the location of screen units.

Performance assessment. The performance assessment that is done by the
SCREEN program serves two purposes: viz., designing screens and/or penetrating
tactics, and assessing the performance of these well-designed screens. As mentioned
before, there are two general measures of performance provided--detection and
localization--and each of these has both a short-term (snapshot) and a long term
(cumulative) level of performance. We will discuss each of these in turn.

Snapshot coverage maps. The short term performance of screens is used to

construct so-called coverage maps which basically provide the pictorial representation
of how well the screen searches out the coverage area of its sensors. For both
detection and localization coverage maps, the basic setup is as follows. A gridwork
is superimposed over the operating area selected. For an individual sensor or sensor
group, it would be a region about that sensor or group; it could also be the coverage

area about the entire screen. (The size of the coverage area is an input provided by
the user. ) At every gridpoint of this coverage area, the performance of the sensor,
sensor group or screen is evaluated,conditioned upon the presence of a submarine
target at that gridpoint, and a corresponding number is placed there.

Typical coverage maps are shown in Figures 11-2 and III-1. The detection map in
Figure 11-2 is basically derived from the sonar equation. Postulating a target at each
of the gridpoints, the detection probability for the screen is evaluated and a number
is placed on the gridpoint which is ten times the probability of detection computed for
that gridpoint. A blank (no entry) indicates that the detection probability was less than
05. A star indicates that a value greater than. 95 was obtained and a numeral between

one and nine indicates that a value within . 05 of that numeric quantity was obtained.
By superimposing coverage maps for sensors or by calculating coverage maps for complete
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screens, it is possible to see at a glance where the high coverage areas and low
coverage areas exist. As a first step in design for optimal coverage, the screen units
would be shifted about so as to provide a "pleasing" appearance of the corresponding
coverage maps. We have deliberately avoided stating what "pleasing" is because it
may be a function of a number of things. One may, for example, choose to allow
gaps in detection coverage maps in order to provide overlapping coverage which would
give better localization. One might also desire to provide increased coverage in the
regions of most likely approach tracks and provide only limited coverage where the
approach tracks are less likely.

A given coverage map is applicable to a specific set of radiated target noise
levels. Since different approach tracks may entail different target noise patterns
(because they entail different speeds and hence different radiated noise), it may be
necessary to produce several coverage maps for different radiated noise levels in
order to obtain a good composite coverage picture.

Localization coverage maps are analogous to detection coverage maps except that
they provide information about snapshot localization. Since the snapshot localization
maps consider short periods of time, localization is only achieved if there is an
opportunity for a cross-fix between passive detection sensors or if there is a possibility
for active detection (in which case, both range and bearing are obtained and, therefore,
a localization occurs immediately). In the design of a screen, the localization snapshot
maps may be useful if it is believed that one may capitalize on the opportunities for
cross-fixes or active coverage in placing active forces or achieving attacks. Implicit
in this is the requirement for communications, which has been mentioned briefly
In an earlier subsection on operating constraints.

Cumulative measures. The ultimate performance measures for the screen are
the cumulative performance measures, Snapshot coverage maps are only an indication
of detection and localization at one fixed time and thus do not take into account the
kinematic aspects of the problem, which are important in the final analysis.

There are two types of cumulative detection measures. One is based upon the
calculation, as a function of time, of the cumulative probability of detection against
specified target penetration tracks. This probability can be used to calculate such
measures as the probability of detecting a target prior to the arrival of the target at
an attack launch position. Such a cumulative detection measure would be used in batch
mode of operation.

In addition, it is possible to use the cumulative measures in the dynamic
(reactive) design of a screen by examining the posterior distribution of targets given
search by the screen with no positive detection results. In this circumstance, the
region where the coverage was heavy would have been well searched and therefore less
likely to contain the target, given that no detection was in fact observed. On the other
hand, lightly covered areas would tend to be more likely spots for targets to be.
Examination of these posterior maps may reveal target "hotspots," t. e., localized areas
on the posterior map where the posterior location probability is significantly higher
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than elsewhere on the map. When the SCREEN program is operated interactively,
it is logical to place reactive forces so as to cover these hotspots as they develop.

In actual use of a related program, DENS, in the Pacific, these hotspots arose in

a number of tactically significant ways. Frequently, parts of the planned coverage
area of a screen would remain uncovered due to such happenstances as unanticipated
equipment outages. The effect of these outages would be revealed in the posterior
maps generated once these outages were incorporated into the screen evaluation. By
examining these posterior maps, it was possible to take collective action to search

some of the gapped coverage area. By this means, it was possible to partially
recover from system malfunctions (sonar outages, screen units out of position, etc.)
in the course of the dynamic evolution of the screen.

Cumulative localization is in essence a Kalman filter TMA using the assumed target
tactic as an input to the Kalman filter. As time evolves, it is possible for a passive
screen to develop a very accurate target localization, and this is reflected in the
localization measure. Thus, it is in principle possible to design a passive screen

about a task force so as to localize a target by the time it penetrates to a predesignated
critical region about the high value units. It would be appropriate then to place
reactive forces or other attack weapon systems so that they could prosecute localizations
achieved by the outer screen elements. To the best of our knowledge, no screen to
date has been designed using this type of analysis, and so the true value ef the SCREEN
program in support of such a design is untested at this time (late 1979).

During some recent analysis, the principal use of the SCREEN program has been
in the batch mode of operation, analyzing alternative designs of screen and penetrating

submarine platforms. It is expected that the batch mode will probably be the principal
use of the SCREEN program. However, we emphasize that it is designed with batch
or interactive use in mind, and the theory has been modified to allow for certain

features one needs when operating the program interactively in real time. One such

feature is the capability to incorporate contact information on the targets as they

might be received by the on-scene commander. Such contact information may be

delayed in arrival, may be altered at subsequent time steps based on new information,

etc. The capability to modify target processes to reflect these realistic considerations
is one of the strong points of the SCREEN program.

-14-
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CHAPTER II

SCREEN FORMATIONS AND THE DETECTION PROCESS

This chapter outlines the nature of a screen formation, discusses the model used
In SCREEN to represent the detection processes of the sensors in a screen, and derives
the detection performance measures computed by the program.

Screen Formations

This section identifies the basic components of a screen, indicates the sort of
principles which govern its formation, and describes how these are represented by the
SCREEN program. Figure II-1 illustrates a typical screen formation which might be
the subject of a SCREEN analysis. It is only a sample, in that not every such formation
needs to have all the components or the exact geometry illustrated in this figure.

Position and intended motion (PIM). The base motion of the task force is described
by the PIM. The PIM course and speed determine the base track of the task force.
The PIM coordinates are selected for convenience; they might describe the conceptual
center of the screen, or they may coincide with the coordinates of one of the protected

I Junits. The PIM coordinates help to define the center of various maps which the SCREEN
program is capable of producing.

High value units (HVUs). The purpose of a screen is to defend HVUs. In Figure 1I-1,
the carrier plays the role of the HVU. The particular nature of an HVU is not

- important; indeed, HVU need not be synonymous with "carrier," since other ships--
e. g., oilers, merchant vessels under protection--may be classified as HVUs.
Evidently, a screen may--and generally will--contain more than one HVU. For
SCREEN purposes, the HVUs represent the objectives of attacking submarines, as well

jas possible interfering noise sources for the screen's defensive sonars. The motion
of the HVUs is assumed to be the same as the task force PIM.

Sensor platforms. The screen itself consists of one or more sensor platforms,Ieach of which in turn hosts one or more sensors. In general, several distinct types of

sensor platforms may be included.
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FIGURE II-1

A TYPICAL SCREEN FORMATION
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I
In Figure 1I-1, for example, surface escorts surround the carrier--they are

placed so as to serve a number of different functions, including plane guard (retrieving
plane crews of downed aircraft) and cruise missile defense. Their proximity to the
carrier may degrade their passive sonar performance, because of interfering noise
emanating from the carrier.

The figure also shows two flanking sonobuoy fields. These may be placed and
monitored by helicopters operating from the carrier deck. Placement of these fields
in the screen may be determined by several competing objectives:

(1) To be removed from the sound field of the carrier and its surface escorts, it
is desired to place the sonobuoy fields as far from the task force center as
possible.

(2) Servicing of the buoys by the helicopters implies a maximum range from
the carrier for field placement, due to helicopter endurance limitations and
task force motion.

(3) The desire to detect targets with enough advance warning to allow attack
before coming under fire makes placement away from the carrier desirable.

Submarine escorts in the forward portion of the screen illustrated in Figure II-1
are intended to provide advance warning of approaching submarines. They may also be
placed to take part in an attack on any penetrators.

The various platforms have physical capabilities and limitations that affect
screen performance. Sonobuoys, for example, are stationary in the water. As a
result, a buoyfield will eventually fall behind the task force PIM. At some point, the
field must be relaid in a position forward of the old field. Thus, the coverage provided
by the field has a cyclic nature, sometimes ahead of and sometimes behind PIM. As
another example, the submarine escorts may have speed constraints imposed by their
sonar suites. That is, it may be necessary for them to slow to a speed less than PIM
in order to be able to detect at long range. This means that a submarine escort will

generally be required to "sprint and drift," alternating sprint cycles to overtake PIM
with drift cycles that lag PIM.

The foregoing is intended to demonstrate the sort of screen formation and assumptions
about it which may be analyzed using SCREEN. With this as background, the representation
of a screen's sensors by the program may now be considered.

Sensors. A sensor is a fundamental entity used in the search (detection and
localization) process of the screen. A sensor consists of all components of detection
gear that contribute to holding contact on a target, including:

.- 17-
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(1) the sonar array,

(2) the beamformer,

(3) the signal processor,

(4) the display device and display mode,

(5) the detection/classification mechanism, and

(6) the localization mode.

All controllable parameters for these various devices are assumed to be specified
in advance of any search. In the case of the SCREEN model, they generally will be
program inputs or else indirectly affect input parameters. Examples of such
parameters are:

(1) for the sonar array--sensor depth, array geometry;

(2) for the beamformer--the method of phasing and shading used. self-noise
discrimination;

(3) for the signal processor--its integration time, whether it operates
narrowband or broadband, and its analysis bandwidth;

(4) for the display device--the frequency band displayed and the degree of
sensitivity, scan rate (number of bearings displayed);

(5) for the detection mechanism--the specific frequency of interest, whether
the mechanism is aurally, visually, or automatically activated; and

(6) for localization--Kalman filter parameters (see Chapter III).

An example of a sensor, then, would be a DIFAR sonobuoy at an operating depth of
300 feet, used with an Advanced Signal Processor (ASP) and an Automatic Line
Integration (ALI) display with a five-minute integration time, set to detect a specific
narrowband tonal.

Each possible frequency of interest corresponds to a "detection mode," which is
specified in SCREEN by a "noise index." A target (screen penetrator) may radiate
in a number of detection modes, but a given sensor may search in only one. That is,
each sensor is assigned one and only one detection mode. Up to 10* distinct detection
modes may be handled simultaneously in one SCREEN run.
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Sensors in SCREEN are of three types: active, passive, and passive line arrays.
An active sensor is one which emits a signal and provides both bearing and range
information about a target upon detecting it. A passive sensor, on the other hand,
does not emit a signal and provides only bearing information. A line array is
distinguished from other passive sensors by the fact that the array, due to the nature
of its beam response pattern, cannot distinguish between a given bearing and its
reflection about the array axis.

A single search unit may require several sensors (in the terminology of this
report) for its description in SCREEN. For example, if a submarine's narrowband
sonar is used to attempt to detect any of several distinct tonals, then each tonal search
is viewed within the SCREEN model as a distinct sensor, with each tonal corresponding
to a detection mode. Moreover, several sensor types may operate on a single sensor
platform. For example, in Figure II-1, each surface escort might operate an active/
passive hull-mounted sonar as well as a towed passive line array. (Note that at least
three sensors would be required per escort, in this example. ) Thus, to use SCREEN
to model a screen will, in general, require more sensors than there are sonars or
search platforms in the actual screen. This leads naturally to the concept of sensor
groups.

Sensor groups. When the screen is set up for analysis by SCREEN, the sensors

are assigned to sensor groups. The prime purpose for defining sensor groups is to
identify logical collections of sensors which may be assumed, for purposes of
performance evaluation, to operate in a "correlated" fashion. For example, the
various detection modes of a narruwband sonar could be viewed as a group. For other
examples, the sonars and processors of a given search platform could be viewed as

a group, as could also the sensors in an entire sonobuoy field. In general, then, groups
are collections of sensors whose detections are or may be correlated, whereas the
groups themselves are stochastically independent of each other. The nature of the

correlation and other distinctions between groups and sensors, will be given later in
this chapter, when group detection performance measures are discussed.

It is worth noting that sensor gi oups also can play a role in the functional operation
of SCREEN. The sensors (or, more precisely, the sensor parameters) for a given
SCREEN run are stored in a "sensor file. " Being able to group sensors eases the

mechanics of constructing such a file by taking advantage of the capability, built into
the program, to copy entire groups of sensors by simply stating the position of a
particular sensor (the "kingpin") of the group. For example, if one of the vertical
rows of four sonobuoys in Figure I-1 were defined as a group with the top buoy as the
"kingpin" (note that this group may involve a multiple of four sensors if each sonobuoy
has several associated sensors), then the remaining three rows of buoys could be

defined by "copying ' the first row at the kingpin positions represented by the top buoys
in each row. This use of sensor groups is actually less important than the use for
correlation of detection performance. The reader is referred to the SCREEN User's
Manual, reference [a], for further discussion. In typical uses of SCREEN,
"sensor files" are established and then reused repeatedly without being rebuilt.
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The SCREEN Detection Model

The detection events depicted in SCREEN are dependent upon signal excess

histories governed by the model to be presented in this section. The purpose of the

model is to develop two basic detection performance measures for a screen and its

sensors: a snapshot detection probability and a cumulative detection probability.

Snapshot detection probability is the probability that a given sensor holds contact on

a target at a particular point in time. The "snapshot" nature refers to the fact that

factors such as sensor motion, target motion, and temporal relaxation times (time

intervals between independent samplings of random signal excess) are not significant

contributors. These factors do become significant in the computation of cumulative

detection probability, which is the probability that a target will be detected during

some extended period of time. The SCREEN detection model for sensors will be

described in the context of describing these two performance measures.

The detection process; integration time. A sensor achieves detections by processing

the signal received from a target. The usable signal, expressed in decibels, is called

the signal excess or signal-to-noise ratio. The mean value of signal excess is a

function of time, given by the sonar equation which is described for both passive and

active sensors in Appendix A.

The detection mechanism which is modeled in SCREEN is an energy detector. The

total received energy (signal plus noise) is integrated over time and compared to the

expected energy that would be received if noise alone were present. A detection is

declared when this ratio exceeds the detection threshold. In some mathematical

descriptions of the detection process, an attempt is made to model the thresholding

process, and then derive appropriate expressions for the probability of detection based

on the assumed model. For our purposes, such an approach would lead to an undesirable

side excursion into the problems of calculating snapshot probability because of non-

linearities that are implicit in ratio threshclding and the use of logarithmic parameters.

To avoid this, we will simply define snapshot probabilities in terms of the expected

value of the total received energy, and omit the detailed modeling of the thresholding

process. A justification for this approach is that the mathematical results reduce to

the standard thresholding results for "instantaneous" detections, in the limit as the

integration time for the received energy approach zero. We will now give a

mathematical model for this mechanism.

Define a detection function, as follows:

t(t) -(s )+I 1, ( 1-1)

E~ft_ IN (s)dWt(s)]
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where:

I s(s) = intensity of target signal at the beamformer output.

I N(s) = intensity of interfering noise at the beamformer output.

W t(s) = weight function.

El. ] denotes the expected value. The integrand in the numerator of equation (11-1)
is the total received signal, including noise. The denominator is the expected
contribution due to background noise and serves as a reference level. The weight
function reflects the type of energy integrator used. In the SCREEN model, the weight
function is given by

dWt(s) =3 exp(- (ts))ds'([1-2)

for s < t.

The quantity co is known as the integration time for the sensor in question. Note that
w is given by:

w = f~ , (t-s)dWt(s). (11-3)

The weight function given by equation (11-2) is called "exponential decay" and is
very commonly used with digital signal processor. Another common weight function is
the "moving window," which is the uniform distribution on (t-w, t):

-ds for t-co < s < t

dWt(s) = (1-4)
0 otherwise.

A true "Instantaneous" detection mechanism would have Wt(s) = 6 (t-s), where 6 (.)
denotes the Dirac delta function; so

t

for a general function €.
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Snapshot detection probability. Since the expected value of an integral is the

integral of the expected value, the expected value of equation (11-1) is easily seen to be:

t EIs (s)dW(s)
S[ ()]110-6)

f to E[IN (s)]dW(s)

The snapshot probability of detection at time t. p(t), for the sensor whose detection
mechanism is given by (11-1) is defined to be

10 log 0 E [ (t)]

Pt) = 0o n(y;RD, 0
2 )dy, (11-7)

2
where n(. ;RD, o ) is the (one-dimensional) Gaussian density function with mean RD
and variance a2 (see equation (--1)). RD is the sensor recognition differential
(in decibels), and a is the standard deviation of the random component of signal excess.

The combination of equations (11-2), (11-6), and (11-7) leads to a very compact
iteration when time is discretized. If Js and JN denote the numerator and denominator
of (11-6):

s(t) = ft E[is(s)]dW(s )  (II-8a)

SN(t) = ft0 EllN (S)dW(s), (11-8b)

then for 6t sufficiently small:

S(t+J6t) 2 e6t/W S(t) + (1-e 6t/W ) E[Is(t+6)] (II-9a)

JN(t+6t) e- e JN(t) + (1-e ) EIN(t+6)]. (I-9b)

The values of E[Is] and ErIN] are obtained directly from the signal and noise
components of the sonar equation. Note that in the limit as w-0,

10 log 1 0 E[_(t)] = 10 log 1 0 E[Is(t)] - 10 log 1 0 E[IN(t) .
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which is the sonar equation. Here E[Is(t)] is target strength minus propagation loss,

and E[N(t)J incorporates the noise terms. Thus, equation (11-7) reduces to the standard
method of computing instantaneous detection probability given, e. g., in reference [c].

The snapshot detection process--single sensor. Each sensor in the task force
screen has its own detection mechanism of the form described in the preceeding
paragraphs. Thus, a sensor j has probability pj(z(t), t) that it holds contact at time t
on a target located at z(t). Because of the integration over the past signal history, as
shown in (11-1), this probability depends on the target and sensor parameters at all
times up to t. However, it is usually considered that the integration time w given by
(H-3) is small compared with the time span of the total engagement, so that for practical
purposes, pj(t) = pj(z(t), t) depends on the behavior of sensor and target only in the
immediate vicinity of time t; hence, the term "snapshot" is intended to convey the idea
of a short time interval around time t. in future references to snapshot probabilities,
target motion is suppressed. Snapshot probabilities are distinguished from cumulative
probabilities in that the latter involve longer term time correlation properties,
including target motion, that will be discussed in the next subsection.

The concept of snapshot probability leads naturally to a representation of the detection
coverage of a sensor. A snapshot coverage map shows the snapshot detection probability
pj(z, t) as the target location z varies over the region surrounding the sensor j. To
compute a coverage map, a gridwork is placed over a map centered at the sensor, a
(hypothetical) target is placed at each gridpoint, and the sn3pshot probability is computed
over a timespan which is on the order of the sensor integration time w. The result is
a map which indicates the detection coverage of that sensor at the specified time.

Figure 11-2 shows a typical snapshot coverage map produced by SCREEN. Table II-1

defines the numerical symbols used in this figure.

Note that other snapshot detection performance measures may be derived from the
snapshot detection probabilities. For example, the expected number of contacts held
on the target by the entire screen at time t is given by

Ec~t M = z pji (t), (11- 10)

where the sum is taken over all the sensors in the screen. Analogous measures for
groups of sensors may be obtained by restricting the sum in (II- 10) to the sensors in
the group or groups in question.

Cumulative detection probability--single sensor. The cumulative detection
probability (cdp) for a sensor j is the probability that a target following a given track
for a time interval to<s<t is detected by the sensor at some time during that interval.
In the discussion of cdp which follows, the sensor, the target track, and the initial time
to will be viewed as fixed. Furthermore, since the SCREEN detection model uses

discrete time, the discussion will be in that context. Hence, cdp will be viewed as a
function of a sequence of times ti, i = 0, 1, 2.... ; typically, t =t o + i(6t), where 6t is

-
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Symbol Prohability Pari-le

* 0.95-1.00
9 ().85-0l. 95
d Q, 75-0.85
7 0.65-0.75
6 0.55-0.65
5 0.49-0.55
4 0.35-n. 45
3 0.15-0.35
2 n. 15-n. 25
I 0.05-n. 15

blank (100-0. 05
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the time interval. The snapshot detection probability for sensor j at time ti and the
cumulative detection probability at time ti will be denoted by pi and cdpi, respectively.
When specific reference to sensor j is desired, we will write Pji and cdpji.

Before proceeding, we remark that SCREEN allows for the reduction of a sensor's
cdp to reflect the sensor's availability during an encounter. This reduction is
accomplished by multiplying the cdp by a probability of availability Pa(J), which is a
program input (and hence represents a subjective assessment on the part of the program
user). The "availability" concept is intended to reflect equipment reliability. In
using Pa to degrade cumulative vice snapshot detection performance, it is assumed that
the equipment's periods of operation and any "down" time it may incur aro. long compared
to the length of time of a typical SCREEN tactical engagement.

In order to discuss cdp's, it is necessary to consider the temporal behavior of the
detection process. Each sensor in the SCREEN program has three parameters which
describe the statistical behavior of its detection mechanism:

RD = the recognition differential,

a = the signal fluctuation standard deviation, and

X = the detection sampling rate.

The use of RD and a in determining Pji has already been discussed in equation (11-7);
it remains to consider the rate X at which the detection mechanism obtains independent
looks at the signal process.

The detection process assumed in SCREEN is the (X, a) jump process, described,
e. g., in references [b] and (c]. The essence of the jump process is that new
independent detection opportunities arrive at exponentially distributed times, with
parameter X. Specifically, for any two times ti and tj > ti, there are associated
snapshot detection probabilities pi and pj computed as in (II-7). With probability
exp[-X (t -ti,)] these two detection events are completely correlated and with probability
(1-exp[-K (tj-ti)]) the two events are completely independent. Thus, the cumulative
failure probability (PF) for these two times is:

PF = exp[-X (t j-ti)] min{ j PJ } + (1-exp[-X (tj-tJ)pj --

where p = 1-p. The value of cdp is then given by 1-PF.

The term "Jump" arises from the notion that "independence" is itself a tangible
thing which occurs at exponentially distributed times. Thus, using the notation of
the preceding paragraph, p1 and pj are independent if a "Jump" occurred in the interval
(tj-ti)--recall that this event has probability (1-exp[-X (tj-ti)]). This is a convenient
way to visualize the process.
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The jump process is the simplest (nontrivial) analytic model which includes the
notion of time correlation in the detection mechanism. Indeed, this is its main appeal.
Undoubtedly, the "correct" model is much more complex; for one thing, the true model
should distinguish between the random components introduced by the signal, the noise,
and the detection mechanism itself. However, the simple model represented by the
jump process has proved to be analytically useful in many situations, a fact which warrants

its use in SCREEN.

Various formulas have been developed for computed cdp under different assumptions,
as is also discussed in references [b] and [c]. One of the most useful of these is
the so-called unimodal formula, which is given in detail in Appendix B; see equation
(B-1). The unimodal formula assumes that the time sequence pl, P2 , ... of snapshot
probabilities for a given sensor is unimodal; that is, the snapshot probabilities are
nondecreasing in magnitude until some "modal" time, after which they are nonincreasing.
Monotone increasing or decreasing sequences are a special case of the unimodal
formula. The unimodal assumption leads to a very compact iterative formula to compute

cdp which requires very little memory of the past. This formulation is as follows.
Initialize variables used in the iteration by:

PF(0) = 1

PO =0 .(If-I1a)

0 0

Then for n > 1:

On = max{ 1'n

On = main{ Pnpn} , (TI- 1ib)

PF (n) = e-n+ tn t- PF(n-1).

Here, of course, PF(n) is the cumulative failure probability at step n, and P1 is the
snapshot probability at step n. Search is presumed to begin with step one. Note that
only the quantities P n and PF(n-1) must be preserved in the transition from
step n-1 to step n; earlier computed values do not need to be retained in the iteration.
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Random sampling. The cdp algorithm in SCREEN is a generalization of equations
(11-11). The idea behind this generalization is that some sensors cannot search for,
or be responsive to, cues to a target's presence in an omni-directional fashion, but
rather can only focus their attention, so to speak, upon a small part of the screen
coverage region at any given time. For example, a long-range active sonar may
search one particular bearing sector at any given time. Hence. while the sonar is
scanning one such bearing sector, a target in a different bearing sector--even one with
an equal or stronger signal excess history than any target in the sector being searched--
may go undetected. Thus, a snapshot detection may only be viewed as a probability of
detection given that a detection opportunity exists, i. e., given that the sensor has a
"glimpse" of the target. This "glimpse" event is governed by the sensor's scan rate.
The implication for cdp computations is that the computation of PF(n) must not only
involve the signal excess history, as reflected by the quantities pl, ... , Pn, but also
the "glimpse" process, which will be reflected by quantities r ... ,rn where 7ri is
the probability that a detection opportunity, or "glimpse," occurs at time ti, and is
related to the scan rate. An alternative description of this "glimpse" event is that the
signal excess process is sampled at time ti; in this context, the "glimpse" process
will be called the "sampling process.

The sampling process is assumed to be independent of the random signal excess
process. The SCREEN sampling process assumes that a sensor's search in a given
portion of its coverage area occurs at random times, according to a Poisson process.
This "random sampling" is in contrast to a systematic search, in which the same
sector would be searched at uniformly spaced times. Its use represents the intent
that a search plan not be defeated by a target which can take advantage of a systematic
search schedule, as it might in the case of an active search, for example. Specifically,
the probability that a sensor has a glimpse of the target during the interval between
times tj_1 and tj is given by:

= 1- exp[-(t.-t. l)/r], (11-12)

where r is the expected time between successive looks by the sensor. Typically in
SCREEN t.-t is equal to the length of the program's uniform time step, and hence
is independent of J. The quantity r is a required input parameter for each sensor.
Finally, the model assumes that if the sensor glimpses in the direction of the target,
the glimpse lasts for whatever integration time is required to set up a detection
opportunity (otherwise, the scanning would be nonsensical).

At this point, before discussing the SCREEN cdp algorithm, a short example might
help illustrate the roles which the various processes and components just described
play in determining cdp. Suppose a sensor is assumed to scan a given sector of its
coverage area on the average of once every fifteen minutes, and consider a sequence
of four time steps (numbered 1 through 4) which are a half-hour apart. (Thus,
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equation (11- 12) implies that ir = 1-e = . 865.) Now suppose that the (snapshot)
probability that the sensor will detect the target in question at time step i, given that
the sensor scans the sector containing the target, is equal to pi, where p, = . 1,

P2 = . 4, P3 = .7, and P4 = . 5. In practice, these probabilities are computed according
to equation (11-7). The sampling process in this example is whether or not the sensor
scans the target's sector. There are sixteen possible outcomes for this process.
One such outcome would be that the target's sector is scanned at each of the four time
steps: that is to say, the signal excess process, from which the pi ultimately arise,
is sampled at each of the four time steps. This is the case covered by references [b]
and [c]. The cdp for this outcome, according to equation (B-1),is

I- (. 3) (1- (. 1)e- ')1(1-(. 4)e- * ) (1-(. 5)e-"5)

where X is the relaxation rate for the signal excess process. Another possible outcome
of our sampling process would be that the target's sector is scanned only at the first,
second, and fourth time step. The cdp according to this outcome is

1-(. 5)(1-(. 1)e-"* 5X)(l-(. 4)(e-)

Note that P3 = . 7 does not "play," so the modal probabilility has changed (to P4 = . 5)
as have the time intervals between the signal excess samples (so that . 4 is now
multiplied by e-X). The true cdp for the sensor in this example is the weighed sum
of the cdp's for all sixteen possible outcomes. (The weights for the two specific
outcomes just considered would be 7r4  . 56 and 7r 

3 (1-7r) . 087, respectively. It
is this probability which is multiplied by the availability probability Pa- More details
on cdp computations are given in Appendix B.

Appendix B derives the cdp formulas which are used in SCREEN for a jump
process with random sampling. The resultant algorithms form an interation somewhat
more complex than (II-11), requiring three additional variables to iterate. The
formulation is as follows. Initialize by:

PF(0) = 1 QQQ = 0

PO = 0 RRR = 0 (-13a)

P0= 1 SSS = 1.
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To go from step n-I to step n, assume that PF(n-1), Pn-l' 1 On- , QQQ, RRR, and SSS
have been preserved from the previous step; compute pn from its own iteration
mentioned previously, compute 7rn by equation (1- 12), and compute e- ?, (tnn- 1).
Then the iteration is given in a FORTRAN syntax by the following steps:

min{Pn- 1'Pn}

?L (= in{P tn- 1) 

QQQ lb e e-t-n1QQQ
n

RRR b nRR

TEMPI 7r rn[Pn SSS + (fn(RRR+QQQ)]

SSS = Jr n SSS (IT- 13b)

in p

QQQ = -_ QQQ. + TEMPIPn

n n-

On

RRR w z RRR+ EP

PF(n) 7r PF(n-1) + TEMP1.

K n

It should be noted that the foregoing algorithm gives only an approximation to the

~ I n

value of PF(n), even in the unimodal case. (in the event of unimodal probabilities
and complete sampling (7ri = 1, all i) however, the iteration gives the same result

! for PF(n) as (11-11). ) on the other hand, studies such as reference [J] have shown the
~approximation to be a good one, even In the nonunimodal case. Given this fact, the

algorithm of equations 11- 13) is to be preferred to an algorithm whose increased
precision in computing PF(n) must be purchased with unwieldly storage requirements.

Snapshot and cumulative detection performance-sensor grous. in the SCREEN
program, cdp is separately determined for each sensor In the screen. These cdps
are then combined to yield the detection probability for a group of sensors or for the

~entire screen. The SCREEN program allows the user to compute cumulative or
' " snapshot performance measures for any specified group, or for the screen as a whole.

-n 1
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One parameter required in definition of a group is the group correlation,

P 0 < Pg < 1. This parameter is used to obtain the group detection performance
as an interpolation between the two extreme cases of complete correlation and complete
independence.

In the case of complete correlation (pg=1). the "best" sensor in the group determines
the group performance, and so the group cumulative failure probability is given by

PF =min PF.,
g jEg

where PF. is the cumulative failure probability for sensor j, which may be obtained
from the Aeration (II-13). (Note: In this formula and the ones which follow, if a
group g consists of sensors J i..... Jn, then g will be identified with the index set

{Jl' .-n} ) in the case of complete independence (pg= 0 ). the group failure
probability is simply the product over all sensors:

PF = H PF..
g jEg

In the intermediate case, the formula used is an interpolation between these extremes:

PF = p rin PF +(l-Pg) H PF..
g g j g I

This equation may be used both for cumulative performance and for snapshot perfor-
mance. In the latter case, PFj should be replaced by 1-pj for each sensor in the
group, where p1 is the snapshot detection probability for sensor j at the time of interest.
Figure 11-3 shows a typical snapshot map for the entire screen. Table HI-1 defines the
numerical symbols used in this figure.

Screen detection performance. If G is a collection of groups--e. g. , the entire
screen--then the failure probability for G is the product of the failure probabilities
for the groups in the collection:

PF G = ri PF . (11-15)
SgE G g

This equation reflects the assumption that distinct groups--that is. the random
components of the detection events associated with distinct groups--are assumed to
be independent.
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CHAPTER III

THE LOCALIZATION FROCESS

This chapter describes the SCREEN localization model and, in particular, the
measures of effectiveness computed by the program for use in assessing a screen's
capability to localize targets. The localization measures are based on the Information
Flow Kalman Filter algorithms of references [g], [h], and [1] and hence assume that
targets follow constant velocity tracks. However, this assumption underlies only
the construction of the localization measures. As will be seen in Chapter IV, the
SCREEN target motion model is a more general process; its accompanying localization
algorithm (called there the "incorporation of contact data") is less developed than the
one to be described here. The basic operational difference between the two is that this
chapter's algorithm is intended to focus on a simplified measure of the screen's
localization capabilities (namely, the capability to localize a constant velocity target),
whereas the algorithm of Chapter IV is a tool for modifying a target location distribution
which ultimately is to be used to compute cumulative detection probabilities (see also
Chapter II). Although it is worth noting that both algorithms have the same ultimate
source in the theory of Bayesian analysis with Gaussian densities, exploring the
connection is beyond the scope of this report.

The first section of this chapter presents the basic Information Flow Kalman Filter.
The second section shows how these must be modified when correlated information is
considered. The third section introduces the concept of "expected information" and
describes the SCREEN localization measures. A fourth section outlines how the
measures are used by the program. Appendices to this chapter address various
analytical details.

The Information Flow Kalman Filter

This section discusses the basic Kalman filter algorithm underlying the localization
process. It is based on the algorithm of § 6. 3. 4 of reference [h] and is also used in
reference [g].

The problem. The object of the algorithm is to estimate a state vector X
which satisfies a set of observations taking the form

Z I n=.. m, (I- )
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where

z is a d-dimensional observation vector,
n

1 is a d by dim(X) measurement coefficient matrix,
n

E is a d-dimensional measurement noise vector.
n

Specifically, it is desired to obtain the triple (X, F, R), where X is the state vector
estimate, P is the covariance matrix f the error in the state vector estimate, and p
is the residual, which is defined as follows. Let wn be a weight matrix (to be
determined momentarily). Then

mT
I (w E) (wE). (111-2)

n= n nn

In the SCREEN applications, X is the 4-vector of target position and speed components
with respect to a rectangular coordinate system. Substituting (11-1) into (111-2) and
collecting terms gives

= mlW X- ZXT{W + {zTw z , (IH-3)1 nn'Tnn n n n'

where Wn = wTw. The Kalman filter state vector estimate X is that which minimizes
the residual, (111-3).

Generally, the weight matrices are chosen so that Wn = Var(E n)-1. For then,
assuming that each En is normally distributed, it follows from (111-2) that R has a
chi-square distribution with m by dim(X) degrees of freedom. Consideration of the
residual may thus be helpful in determining a goodness-of-fit parameter. SCREEN
does not do this within the framework of the localization process, but it is mentioned
here for the sake of completeness and independent interest.

In addition to the observations (111-1), a prior triple (X 0 , P 0 ,1 0 ) may also be
specified.

The information flow algorithm. The three bracketed terms in (11-3) help to form
the information matrix 9, the information vector q, and the information residual a,
respectively. (The term "information" stems from the correspondence between 59and
Fisher information in the case of Gaussian densities. ) When P is nonsingular, these
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three quantities are,by definition, related to the triple (X, P, R) by

, = Px, x gr- (1-4)

The information flow algorithm may now be described. If

Z = " L = " E = "
n ' n n'

LnJ L nj n.

so that the equations (111-1) take the form

Z = L X + Em (I11-5)
in m n

and if N = Var(En), then the information quantities are given by

:'L = T N - f 1 Lm, (III- 6a)
LT N- 1

1 9+ L TN_ L ([11-6)

R T -_1 Z(II-6b)
o m M m

T0 -1mZm' (III-6c)

where (t 9 0, X', eW ) are related to a prior (X0 , P0 , R0 ) through equations (111-4), and
are set to zero if no prior is specified. If the observations are uncorrelated, i. e.
Cov(ei, Ej) = 0 for i o j, then the equations (111-6) take the form

m T -1

m T -1
'= ['+ E T (Var ) z' (111-7c)

0 1n n
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The relationship between the information quantities and the bracketed terms in (III-3)
is evident from equations (111-7).

The equations (111-4) and (11-7) accomplish the information flow Kalman filter
algorithm. For a proof, the interested reader is referred to reference [h]. The main
feature of the algorithm is apparent by comparing (11-1) and (IHI-7) or (111-5) and
(111-6): observations entail an "additive adjustment to information. " These adjustments
may take place even if P is singular.

Correlated Observations

In the applications addressed by reference [g], the dimensions of the observations

are at most 2; moreover and more importantly, the observations are independent. Thus,
equations (III-7) may be used and are computationally very tractable: the inverses

involved are those of 2 x 2 matrices. In SCREEN localization process applications,
however, observations will generally be correlated, requiring use of the equations
(111-6), which because of the requirement to produce the inverse of the md x md matrix,
NmI is less desirable computationally. The algorithm described in this section is
intended to be a computationally tractable implementation of the equations (111-6). and
is taken from reference [1]. Appendix E will describe the algorithm for the types of
observations considered in SCREEN. Appendix D contains the facts about correlation
matrices that are relevant to the following discussion.

Suppose then that the measurement noise quantities are correlated: i. e., if
i -Var(E i) then there are d x d matrices pij such that

COV(E i , E.) = oiicj
co(iI E iPij(j*

(In the terminology of Appendix D, Pij P (E i, c.) and a or (Ei). Note also that Pii
is the identity matrix, and P= Pi) Thus, the (i, j)-element of Nn Var(En) is

o i p i j o j .

The heart of the algorithm is the following assumption:

P PJk = Pik; for i < <_ k. (1II-8)

For example, if for a constant matrix p, Pij is defined to be pj-i for i < j (and to be

I pT if i > j), then the conditions (111-8) will be satisfied. Other examples appear in
Appendix E, in which the specific instances of the algorithm occurring in SCREEN are
discussed. Since the indices are usually viewed in these applications as corresponding
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to successive sampling times, the conditions (111-8) may be described as "correlation
in time."1 See also the note at the end of Appendix D.

Now, N n+1can be written as

n++ T

where

(Y1 ,n-U In+ 1V 1
2 T

IfS=N-1 V andT=a V VS, then by Proposition G- 1,n n n+1 n

1 T

where I1is the d x d idnity [ma:trix.-S IJ ~LL

It is evident, using the conditions (111-8), that

solves N nS =V n The symmetry of the matrices ()r i mples that

T =r 1 - P P ]
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Equation (111-9) then becomes

-I-1 T -1 [0 T -1 -1
Nn+ 1 = LO 0 _j+ -am n n, n+ 1 -Pn, n+l 1 n, n+ 1] -P n, nflcrn ** n+l"

-1
_ n+l

Now let

" Vn, n+l= ~n+1 n+ I n, n+l nl 1 nin+l n l +n, +- l nn+ 1n)'

-1T -

1nn~ =  1 T 1l IT T - 1 (- 1 z Tn ~ 1n) (I1 lb)

(.n+ 1n+ -n, n+ la n n)T [n, n n, n+ n+ 1n 1(7 nz -- n,

1 z -ln [1 T  p +1-I(a-1 z T la- 1 n). (III-Ile)

Wn, n+l I n+ I n+ 1- Pn, n+ f n nn+l n,rn n+ In+ l-pn, n+ ln

Then the following equalities are evident from equation (H-10):

n+ 1n 1 TN- 1L 011- 12a)

L n+I N n+ 1 =  LT nln n+ -q,n+l' Il1b

L T N_1 = zTN-IZ + jn?~ l (III- 12c)
nl n l 1n+l n n n n,n+'

If we define p01 0, then it is evident from equations (111- 11) and 011- 12) that the

equations (III-6) may be rewritten as
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rn-i

n=0

m-1

n=O

m-1
+ : , + (I1I-13c)0n=0 n, n+ 1"

Note that equation (111-8) is still valid if i = 0.

The equations (H1I-11) may be cast in a slightly simpler form by introducing a
few auxiliary terms. First of all, let

1

RT 2
n+1 = n,n+l n,n4l

(Note. -n this report., if a positive definite symmetric matrix M is written

M = OAOT

1
2

where 0 is orthogonal and A is a diagonal matrix, then M denotes the matrix

1
A2 

0 T
o A OT

1

where A2 is obtained by taking the (nonnegative) square root of each component of A.)
Then let

- -1
nI n-14 )n+l'

T--

n+ 1 = (n+ 1 n+ 1 Il1b

Z R z (11-14b)Ln,n+l =  n+ 1 1ln+l-pn, n+in),  15)

Z n, n+1 = R n+ 1l(Z n+ l-On, n+ lz n) .  OHI- 15b)
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Then equations (111-11) take the form

= L (If-16a)n, n+ 1 n, n+ 1 n, n+ 1'

L LT  ' II1b

,n, n+ 1n, n+ 1'

= ZT  (III- 16c)W/ln, n+ 1 n, n+ 1 n, n+ 1•

Equations (III- 13) through (ll-16) form the Kalman algorithm for correlated
observations. The form of equations (III-13) shows that the quantities described by
equations (III- 16) may be used to adjust the information quantities as the observations
are made. for the only correlation needed for an adjustment is that between the current
observation and the previous one. Storage of the quantities an, 1n, and zn is also
required to update from observation n to observation n+1. (Alternatively, (7-l n and
anlzn may be stored. ) The inversion of the larger matrix NI is avoided. The
inverses required in the implementation of equations (11-13) are those of d x d matrices.
Generally, d will be small--e. g., in the SCREEN context, d will be either 1 or 2--
so these inversions will be computationally more tractable than those involved in
equations (111-6). Table 111-1 indicates the flow of the algorithm described in this
section. Appendix E specializes the algorithm to bearing, bearing/range, and SPA
observations, which are the observations of interest in SCREEN.

As a final note, if the observations are independent, then pi, = 0 for all i and j;
in this case, it is apparent from equations (111-11) and (111-13) that the algorithm reverts
to that of equations (111-7). Thus, the present algorithm extends that of references
[g] and [hJ.

Localization Measures Based on Kalman Filters

One important measure of effectiveness for an ASW screen relates to its ability to
localize a target once it has been detta-ted. One way to express this ability is to
determine the expected value of the Kalman filter triple (X, P. R). To calculate
such a quantity directly, however, requires complex and highly nonlinear operations.
Indeed, the only practical way to determine it directly is by the use of Monte Carlo
methods. But Monte Carlo methods are not feasible when it is desired to obtain two-
dimensional pictures of performance such as SCREEN snapshot coverage maps: the
number of replications which would be needed to insure that the figures on such a map
lie within tolerable limits on the Monte Carlo "noise" would be astronomical.
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TABLE III-i

FLOW OF REVISED KALMAN ALGORITHM

Notes: 1) Algorithm is designed to process the m observations of equations (11-1) in
the text.

2) As algorithm begins, the information quantities, & ~~ have been either
initialized or computed via earlier information processing.

3) S, and S2 denote storage arrays with dimensions d x dim X and d x 1, respectively.
These arrays carry information between observations.

START

S =0
L01

n n0

U- z

n n
T 'R [I-P n-i, n n-1, nJ 2

=~n-1,n 1

L = *IS1

Z R~(-

~ LTZ

S,=
S2

NEXT n
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The approach taken in SCREEN is essentially to define a localization measure
within the information domain. As is seen in the above treatment of Kalman filter
information, information tends to be simply additive--even in the case of correlated

measurements--and so easily lends itself to an expected value treatment. After
defining expected information quantities, we then use the inverse (as in equations 111-4)
to obtain a measure of localization. The scheme which results is computationally
very straightforward. However, as mentioned in Chapter I, the ultimate test of how
precisely it depicts localization performance will only take place in a screen design

analysis in which this type of performance is considered as a factor. Such an analysis
at this time (late 1979) remains to be done.

"Expected"information. Suppose the observations underlying the equations (111-1)
have respective probabilities Pn of being made*. The idea behind "expected" information
is to incorporate this uncertainty into the algorithm of the preceding section.

First, consider the special case where the observations are independent. In this
case, equations (111-7) show that each information quantity is a sum of information
quantities computed for each observation and "prior information" (V 0 ')0

Viewing each observation as a random variable with probability Pn, to each of which
has been assigned three information quantities as given by the summands in equations

(111-7), expected information quantities may then be defined in the classical fashion:

In T -iT
E (G) = '0+ Z p n In(var(En)) in' (fI1-17a)

n= 1

m

m T -1
E = + Z p~ zn (Var(E) Z (11-17c)

0 Pn tn Ca n))- z n

n=1

The key to generalizing equations (111-17) to the case of correlated observations
lies in viewing each term multiplied by pn as being incremental information provided
by the nth observation. Indeed, if pn, n+ 1 = 0, then

T1 (Var(c 1 1=9n~+ n+ I1n+ 1

The quantities Pn are the product irnpn of the snapshot probability, Pn, and the

sampling probability, ir , discussed in Chapter 11: for economy of notation, we
just write Pn.
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and similarly for the other quantities in equations (111-11). Therefore, in the case ofA

correlated observations, define (j',4-4 ) thus:

A rn-i

J = ,eo + T- Pn+ 1!7n, n+ 1 (I- 18a)
n=0

A m-I
= .. + T, Pn~ :n (III- 18b)

n=:O

A m-1

= , + I Pn+1 -,n+1 (III- 18c)
n=O

These are not expectations in the true sense of the word, as the quantities of equations
(1M-17) are. The reason for this is that the incremental information quantities ,.o.n+ 1'
etm., assume samples at both n and n 1; if this is not the case, then the correlation p
will be different. Although the precise formula for expected information for correlated
measurements may not be exceptionally difficult to derive, we will simply view the
quantities (111-18) as the "expected" information, since they are reasonable generalizations
of (III-17) and are computationally more tractable than the precise formulas.

"Expected" localization. The localization measure used in SCREEN is based on
the inverses of the quantities (111-18), as given by equations (111-4), viz.,

A A 1

and A A (I-19)

A
These are called the "expected" localization parameters. From P, in turn, is derived
a scalar localization measure (in units of nautical miles), namely

L=t1+2 (111-20a)

where
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11 12 13 14
A

= 2 22 23 2 4  (11- 20b)

P4 4

Since the Kalman filter vector X has position as its first two components, L is interpreted
as the 1-sigma radius of a circular SPA which has the same area as the "expected"
localization ellipse defined by (III-20b).

The quantity described by equations (111-20) is the basis for the snapshot
localization measures in SCREEN. However, a technical issue arises in applying
(111-20) when the matrix .is singular. Although one's initial impulse is to simply
consider L undefined, it is, on the other hand, quite possible for useful localization to
be contained iny even though it is singular. For example, cross-fixes between
passive sensors at a single time will produce a position fix but no speed estimate.
Appendix E contains the method used to perform a partial inversion of A and resolve
this dilemma.

SCREEN Localization Performance Measures

The SCREEN program illustrates a screen's localization capabilities in two ways:
by coverage maps and by target motion analysis (TMA) against penetrators. These are
analogous to and serve as companions to snapshot and cumulative detection performance
measures, respectively. Detection performance measures were described in Chapter 11.

Localization coverage maps. Snapshot localization performance is illustrated by
SCREEN by localization coverage maps such as displayed in Figure 111-1. These are
analogs of the snapshot detection coverage maps of which Figure 11-2 is an example.
The procedure for their construction is also similar: evaluate the "snapshot localization
measure" given by equation (111-20) at every point of a gridwork superimposed over the
screen coverage area. Since a snapshot map refers to a particular time (i. e. , program
time step) there is no correlation between observations, so thatLAhas the form of
equation (I11-17a), the sum being over the sensors playing at the time. More precisely,
to obtain a given value on the map, a target is postulated to be positioned at the point of
interest and the corresponding quantity L is computed as just described. If the resulting
value of L is less than 9. 5. a digit from 1 to 9 or an asterisk is displayed. An asterisk
indicates that L is less than 0.5; a digit N indicates that N-. 5 < L < N-. 5. A blank
indicates either that L is greater than 9.5 or that L is undefined because ! is
singular and contains insufficient localization information. As illustrated by Figure 1I- 1,
localization coverage (evidenced by nonblank grid points) occurs generally where cross-
fixes between passive sensors or detections by active sensors are must likely to occur.
The convergence zone intersection of the two forward passive sensors produces the
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localization '4' forward of the main body.

The numbers displayed in the snapshot localization map can be viewed as expressing
the expected radius in miles of a 1-sigma circular SPA at that location, given detection.

Cumulative localization. The cumulative localization performance (clp) of a sensor
is assessed by accumulating the "expected" information (111-18) for target penetration
tracks*. This may be done at the same time that cumulative detection probability is
determined. To obtain group or screen clp, the quantity - A is accumulated for
each sensor in the group or screen over the time span in question, these quantities are
combined for the sensors in the group or screen (appealing again to the additivity of
information), and finally this result is added to qO and inverted to yield P and ultimately
L, via (111-19) and (111-20). The localization performance is summarized in two ways:
first, in a table stating the distribution of L-values given detection, and second, in a
map similar to the snapshot coverage maps, showing localization given detection.

Recall that target penetration strategies are represented by averaging over a

number of specific target tracks against which search and localization are performed.
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CHAPTER IV

THE TARGET MOTION MODEL

This chapter describes the target motion model used in SCREEN, which is
intended to incorporate the assumptions made about the penetration tactics used by
submarines approaching the screen.

Introduction

The tactics followed by a target during an approach depend on a number of factors,
for example: his position relative to the task force base track, his operating
characteristics (speed and radiated noise), his state of knowledge about the screen
unit locations and the base track of the task force, and an assessment of his
vulnerability and the screen's protective capability.

In most cases, due consideration of these factors results in a limited number of
viable approach strategies, which vary in sophistication from a 'damn-the-torpedoes'
flank speed intercept course to a cautious approach that attempts to detect and evade
screen units.

The SCREEN program allows the user to build and store a variety of target files,
each of which corresponds to a particular approach strategy. The purpose behind this
is to provide the user the capability to evaluate screen performance against various
penetration tactics. The program can also be used from the opposite viewpoint, i. e.,
as a tool for finding optimal penetration tactics based on assumed levels of information
about the task force. In most any screen evaluation, it is generally expected that to
describe the full range of likely target penetration tactics will require multiple target
files. Thus, the capability exists for running the program with up to 99 distinct
target files. (The exact nature of a target file is discussed in reference [a]. )

The target strategy as defined by a target file is simply a multidimensional Gaussian
distribution for the joint location of target position at a specified sequence of times.
A sample from this distribution is a particular target track. The mean of this distribution is
the base track which characterizes this particular strategy.
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Much of the remainder of this chapter concerns the question of how the probability
distribution representing a target strategy is established. The intent is to provide a
constructive approach to defining this distribution so that it can be rclated to tactically
meaningful concepts. Specifically, the approach reflects such items as:

(1) the initial location distribution of the target;

(2) initial target course and speed distribution;

(3) mean time between new random course and speed selections;

(4) positive contacts (bearing lines and SPAs); and

(5) marginal constraints which reflect target objectives or motion restraints.

The mathematical process at the heart of the model is based on a generalized
Ornstein-Uhlenbeck process. The first part of this chapter presents the background
behind this process and its use to model target motion. Following a discussion of the
physical and mathematical models to be considered, the various operations in the
mathematical model are discussed. The chapter closes with an overview of the model's
use. Of course, detailed discussions and derivations are deferred to notes and
appendices as indicated.

Background: The Ornstein- Uhlenbeck Process and Generalizations

The Ornstein-Uhlenbeck (OU) process is a one-dimensional process on the velocity
distribution of & particle moving along the real line. It was first considered by
Uhlenbeck and Ornstein in 1930 (reference [d]) to provide an alternative model for
Brownian motion. Doob, in reference [e], considered this process in the light of
modern probability, gave the process its name, and showed it to be characterized by
the following properties:

(1) the process is homogeneous in time (that is to say, the distribution is

unaffected by the choice of time zero);

(2) the process is Markov; and

(3) the joint distribution at every two arbitrarily chosen times is
bivariate Gaussian.

Specifically, Doob's theorem shows that if the process u(t) with E(u(t)) m and
Var(u(t)) = a 2 satisfies (1), (2), and (3), then either

-



(i) the process is a "white noise" process: for every set of times ti < ... <
the random variables u(t), .... u(tn) are mutually independent and Gaussian,
with mean m and covariance 72; or

(ii) the process is an OU process: there is a positive constant p such that if
t1 < ... < tn, then u(tl), .... u(tn) have an n-variate Gaussian distribution
with common mean m, common variance a2, and covariances given by

2

E[(u(t)-m)(u(s)-m)] = c exp(- 3 t-s 1).

The process (i) might be considered a "pathological" OU process, with .

Reference [e] also shows that the sample paths u(t) of the OU process are continuous,
with probability 1. Therefore, integration is admissible, and the corresponding
displacement process, the Integrated Ornstein-Uhlenbeck (IOU) process x(t) can be
formed:

x(t) - x(0) f t u(s) ds.

Because u(t) is continuous, x(t) has differentiable sample paths--(i. e., the
particle has a finite velocity)--an improvement over Brownian motion. Even so, the
IOU is not physically realizable because there is no acceleration: the sample paths in
velocity space are nondifferentiable. (However, this is preferable to the random walk
model ior Brownian motion, whose sample position paths are nondifferentiable--
velocity is nonexistent.)

1 Generalization of the OU process to two or more dimensions is straight-forward,
and requires no further comment.

i The application of the IOU process as a target motion model in search problems was
initiated by reference [m], where it is argued that, despite its physical nonrealizability,

I it is still close enough to a physical process to have utility as a model. Indeed, it is
demonstrated there that the IOU process gives the best fit among all Gaussian diffusions
to the motion of a randomly touring target. Subsequent investigations into the IOU process
as a target motion model revealed other advantages, including the removal of the
"hour-glass" effect inherent in models whose sample tracks are formed from constant-
velocity interpolations between uncorrelated draws from sequences of positionIdistributions.

I
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The target motion model developed in this chapter is based upon a generalized
Ornstein-Uhlenbeck process. The idea of the generalization is to have the process be
multi-dimensional and to allow the process parameters (mean and covariance) to vary
with time. The generalized process in question is described as follows. Let Vt be
the mean target velocity at time t, as expressed in terms of a rectangular coordinate
grid. (In the case of the SCREEN model, vt is two-dimensional. ) The actual target
velocity is a random quantity,

Vt = V t + Et ,  (IV--l)

where Et has the following properties:

(1) For each t, Et is Gaussian with mean 0 and covariance r t .

(2) There is a nonnegative function p such that

(a) for all t, fs P (x)dx = co, and

(b) if s < t, then s and t have a joint multivariate Gaussian
distribution with cross-covariance given by

cov(Es , Et) = exp(-f t p (x)dx)r s .

There is a unique Gaussian stochastic process satisfying the properties (1) and (2).
This process will henceforth be called the GOU (for generalized Ornstein-Uhlenbeck)
process. A one-dimensional GOU in which Ft and p(x) are constant functions is an
OU process as described by Doob's theorem (with m=O).

The Discrete IOU Process

Basically, the target motion model in SCREEN is a computationally attractive
approximation to another model which is more desirable from a physical standpoint.
It will be seen that both models--the physical model and its analytic counterpart--
exhibit the same second order behavior; therefore, the two are "close enough" (in a
sense already mentioned in connection with reference [m]) so that the computationally
more attractive one may be implemented in SCR EEN as representing the desired
physical process. Both models will be described presently.

The physical model. The idea behind the physical model is as follows. To obtain
an actual sample track, one adds to a base velocity (which is a function of time) random
velocity vectors which are independently drawn from Gaussian distributions at
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exponentially distributed times; integration of the sample velocity path so generated will
give the sample target track. The base velocity function is the "track plan"--for example,
in a screen penetration, it reflects the general tactics to be used to move from a
position outside of the screen to an attack position. The random component reflects
variations in the base plan and uncertainties from the viewpoint of the screen defense.

The velocity process at work here may be called an exponential correlation process.
This model was first proposed by D. C. Bossard and W. H. Barker in reference [o]
in the form of a discrete time process, but will be described below in the framework
of continuous time processes. There is a close connection between this process and
the (Ak, a) jump process (see Chapter 11 or reference [b]), which is widely used as a
model for signal excess fluctuations.

Let vt be the mean target velocity at time t, as expressed in a (two-dimensional)
rectangular coordinate system. The actual target velocity at time t is a random quantity

Vt = Vt + Et, (IV-2)

where et has the following properties:

(1) For each t, Et is Gaussian with mean 0 9nd covariance rt.

(2) There is a nonnegative function gt such that

(a) for all t, ftL (x)dx = o, and

t
(b) if s < t, then the probability that E - 4t is q = exp[-ftp(x)dx]

and the probability that Es and Et are independent Gaussian samples
is 1-q.

In the terminology of reference [o], property (2) says that the target has "exponential
memory." An alternate description of the model may be given in terms of Monte
Carlo paths. A Monte Carlo sample (velocity) path for the exponential correlation
process would be obtained by the following algorithm:

(1) Set t = 0 (or to the desired initial time).

(2) Select a random velocity Et from the Gaussian distribution
with mean 0 and covariance rt, independent of our prior draws.

(3) Draw a random number r from the uniform distribution on the
unit interval [0, 1].

(4) Find a time tr such that
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tr= exr- (x)dx].

(That such a tr exists follows from property (2)(a).)

(5) The actual target velocity between times t and t is given by:r

V =v + E t ,  t< s< t r ,

(6) Set t = t

(7) Return to Step 2.

Integration of the sample velocity path constructed as above will yield a sample
target track.

This process is not Gaussian, as may be demonstrated by computing the
characteristic function of the joint distribution of Vt and Vt for t, < t 2 . This is
done in Note 1 at the end of the chapter. It is very desirablOto work within the
framework of Gaussian processes if possible, because of the considerable computational
advantages--for one thing, a Gaussian process is completely characterized by its
second order statistics (mean and covariance structure); in addition, Bayesian updating
of the type considered later presumes that the process is Gaussian. The next subsection
will define a Gaussian model that will be used to approximate this physical model.

The mathematical model. The basic target motion model used in SCREEN is
-, ' : called the discrete IOU (DIOU) process. This computational model is a displacement

process on the Cartesian plane in which the velocity is a step function obtained by
sampling the GOU process at discrete times. This idea will now be made precise.

Let0=t o < t1 < ... < tT be specified sampling times. Let Vt be the GOU process
defined in (IV-i), where p is the step function such that p (s) = p(tl_1 ) for tl_ 1 :S s < t1 .

Then, where 6i = ti+1 - ti, define zj for j = 1 2, ... by

j-1
z. = z 0 + 6i Vt. (IV- 3)

i=O

The 2-vector zj= z 0 is a displacement from an initial position z 0 obtained by sampling the

GOU velocity process at times preceding tj and integrating. The quantity z0 is assumed to be
drawn from an initial target location distribution, which is independent of the GOU
process. Define the (2T + 2)-dimensional vector ZT by
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z1

Z " (IV-4)

T

where each component zj for j > 0 is given by (IV-3). The random vector ZT defines
the target track through time t. Note that these tracks are not sample paths of the
integrated GOU process, although they approach such tracks as T - M and the 6 i
approach zero uniformly. See reference [q] for a direct demonstration of this using
the relations (IV-6) below.

A multivariate Gaussian distribution for Z T is uniquely determined by that random
vector's mean OT and covariance matrix B T . If gn (n) is the 2-vector consisting of
the (2n+l)th and (2n+2)th components of On, then it is evident from (IV-3) that the
mean vectors are related by

go = z0  
(IV-5a)

fln+ 1 = [on(n2+6 ] (IV-5b)

(Here and in the following, Vn, Ph, Vn, and rn denote vt , ptn, Vt , rtn, respectively.)
The covariance matrices are related by the recursion relations beow, in which bij and

L: hij are 2 x 2 matrices with the interpretations:

b.. = cov(zi, z1 ),

hij cov(zi' 6 1

B = [bij], ij 0, T, (IV-6a)

bij b i, J-1 + hij' 0 < i < J. OV-6b)

bij- (bJ, i ) T ,  0 < j<, (V-6c)

hij )-I h i, J-l' 0 < L < J, (IV-6d)
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6.e
e 6 1 exp(- 6j), j = 1. 2, .... (IV-6e)

j-1
2h .. -- h ._ 1, i + (6 _,) r i_ I,  i = 1, 2, (1 ( V -6f)

The proof of the relations (IV-6) appears as Note 2 at the end of this chapter.

The recursion embodied by the relations (IV-6) may be described as follows.
With boo = Var(z0 ) and h0 0 = 0, construct h0 1 by (IV-6a), h1l by (IV-6f) and b1 1 by
(IV-6b). Now suppose that BT as in (IV-Oa) and hij for 0 < i < j !Sr have been
constructed. (Actually, at this stage, only h. for 0 < i < r are required.) Then,

I.1TBT+1 may be constructed by following these four steps:

(1) Use (IV-6a) and (IV-6f) to construct h. for 0 < i < r+l.
i,T+I

(2) Use (IV-6b) to construct

bo +11

T

T
(3) By (IV-6c), [bT , 0"" ",b + = HT

T+10"" +1,T T

(4) Construct b by (IV-6b).
T+T,T+I

Thus, H, HT and b+ are constructed in that order, and
T 7 T+1,7+1

,.B Ht
_:T T"

B
T+1 HT  bT. r lr+l_

To summarize: the DIOU process, which is the basic target motion model in
SCREEN, is the process Z T derived from the GOU velocity process in the manner
indicated by (IV-3) and (IV-4), and has mean OT as described by (IV-5) and covariance
matrix B T governed by the relations (IV-6).

Relationship between the physical model and the mathematical model. As noted
before, the physical model is not Gaussian, whereas the DIOU is Gaussian. However,
the two processes have the same second order behavior: they clearly have the same
mean, and if s < t and q exp[-fstup(x)dxj, then for s, t and p(x) as in the exponential
correlation model,
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cov( St = q cov(Qs. t t =s=t) + (l-q) cov(Qs. tt t. and tt are independent),

= q cov( s.,)

t
= exp[-f t p(x)dxlr s

which defines the same cross-covariance structure as the GOU. Thus, the GOU,
although not physically realizable, provides the best fit in the sense of reference [m]
among the Gaussian diffusions--which are to be preferred from a computational point
of view--to the physical model given by exponential correlation.

Actually, the similarity between the two processes extends further: it is also
the case that all odd-ordered central moments vanish for both the physical process
and for the DIOU. Thus, the first disagreement in models occurs at the fourth-order
moments.

In the subsequent analysis, then, the DIOU process will be used to model target
motion, and will be interpreted as representing the physical model described above.
There are two possible viewpoints regarding interpretations:

(1) The "true" model can be viewed as the Gaussian process described by
the DIOU and the physical model an appropriate interpretation.

(2) The "true" model can be viewed as the physical process described above,
and the mathematical treatment viewed as a technique which keeps track
of the first and second moments of the process--a second order approximation
to the true process.

Either viewpoint may be adopted, and the interested SCREEN user is encouraged to
adopt one of them, according to his preference.

Operations on the DIOU

The DIOU process is the starting point, the raw material, so to speak, from which
the actual target motion is synthesized. To arrive at the final target process, the
DIOU must submit to a series of operations. The conceptual sequence of operations
is as follows:

(1) The DIOU is constructed as In the last section for the times of interest--
one refers to the operation of extending the time interval over which the
process is considered as time-stepping, or as performing a time step
increase.
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(2) The DIOU process constructed in (1) is constrained to satisfy certain a priori
conditions--more precisely, the marginal location distributions at certain
times are specified.

(3) Weighted combinations of constrained DIOU processes in (2) are used to
synthesize the underlying target motion.

(4) Positive contact information (if present) is used to modify the process in (3).

The first three steps build up the assumed target prior distribution for each time step
of interest. This reflects assumptions concerning the target tactics and uncertainties
in those tactics. Each DIOU component may reflect a specific scenario, a generic
kind of tactic--for example, approaching a moving task force from different starting
positions may involve essentially different tactics: e. g., a tail chase from a rear
position versus a loiter from a position ahead of the base track. The constraints may
reflect geographic limitations on target motion--for example, the passage from an
ocean basin into a strait or channel. The weighting of distinct DIOU processes may
reflect a subjective assessment of the likelihood of the different scenarios.

Normally, one would expect the construction process to proceed in the logical
order given in the steps (1) through (4) above: first time step, then constrain, etc.
However, in actual use, this may be an extremely inconvenient thing to do. In a
real-time application, it would be desirable to time-step only as far as necessary to
reflect the situation up to the present or near future; as time passes, the time window
could expand accordingly. As well, it may be desirable to apply and remove constraints
at will while the problem is in progress (e. g. , in order to test various hypotheses).
Finally, contacts may be reported after varying time delays; subsequent information
could cancel or modify earlier contact reports.

Thus, although it is very desirable to think of the various operations on the DIOU
as occurring in the logical order given above, one must, in fact, make provisions for
applying and repealing these operations in any sequence, and to do so (if possible)
without unravelling the process back to its raw components and rebuilding it, each
time some new variation in the operations is desired. This is the motivation for the
remaining treatment in this chapter: it is desired to perform operations directly on
the modified DIOU process--even though the operations should logically be performed
in the order given above-- and the net result must be the same as though the operations
were in fact performed in that logical order.

With this as background, the operations which will be applied to the DIOU can now
be presented. The DIOU process itself, over the time interval [0, tT ) is described
completely by the pair (pr , Br ) described previously: OT represents the mean or
base track and B T is the covariance matrix of the position uncertainty about the base
track. The Gaussian distribution determined by (O. , BT ) will be called the unconstrained
prior distribution (UPD). The operations on the DIOU which were described above
will involve three different operations on the UPD:

-56-



(i) Marginal constraint - the marginal distributions for some components of
Z are to have a specified Gaussian distribution.

(ii) Incorporation of contact data - the distribution for the track is modified

to reflect information gained by sensor contacts on the target at particular
times.

(iii) Time step increase - the time interval of interest [0, t . ) is to be replaced by
[0, tT+ 1 ).

It will also be desirable to be able to undo operations (i) and (ii), for reasons indicated
previously. The specific natures of these operations will be discussed in later
subsections. The effect of each operation will be to transform the UPD into another
Gaussian distribution, which will be called the modified target distribution in the
sequel. Technically speaking, operations (iii) and (i) should be applied in that order
to the UPD, obtaining a modified distribution to which operation (ii) may be applied:
this puts the steps (1) through (4) mentioned earlier in the context of what follows.
However, to reiterate the philosophy of this section in that context, the present goal
will be to show how these operations may be accomplished- -without regard to order--
by directly operating on the modified distribution.

DIOU operations and the information domain. To distinguish the modified
distribution from the UPD (although note that the two will coincide if operations (i) and
(ii) are not performed), the mean and covariance matrix of the modified distribution

over [0, tr) will be denoted by 'YT and CT-, respectively. Thus, according to the
modified distribution,

pr{ Z =Z}I = n(Z;-y ,C
T T T(IV- 7)

= exp -[(Z-V )T CT(Z-yT) -KT ,

where n(. ;r, CT) is thus the Gaussian density with mean YT and covariance matrix

C T and KT is a normalization constant which insures that the density integrates to
unity over all space. See equation (H-1).

Assuming that CT is nonsingular, the distribution may be specified in either one
of two ways:

(a) By the pair (Cr . , y . ), whose components are defined by equations (IV-7).
This will be called the covariance domain representation of the distribution.

(b) By the pair , sT), where
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T = C T (IV-8a)

= 1 TT (TV-Sb)

This will be called the information domain representation of the distribution, in analogy
with terminology of Chapter III. The matrix J will be called the "information matrix,"
and RT will be called the "information vector. " If Cr is nonsingular, then there is a
one-to-one correspondence between the two domains, as indicated by equations (111-4).
In the present case, this correspondence is given by the equations (IV-8) and the following
relations:

c = OV-9a)T T

-1

'YT=JT rtT (IV-9b)

Now, it will be demonstrated in later subsections that the marginal constraint and
contact datum operations involve certain additive adjustments to the information
matrix and information vector. In particular, each operation will pertain to a set
u = {u 1 , .... uk} from the index set { 1,... , T , and will give rise to a k x 2k matrix D
and a 2k-vector d. The adjustments will then take the form

D9 d(IV-10)

where .-. and f {dy and dT) are the information matrix and vector of the modified
distribution for ZT before (after) the operation has been performed. In equation (IV-10),
the (+) sign means that D should be added to the 2k x 2k submatrix of I9T corresponding
to the index set u. The sign has the analogous meaning in equation (V-11). The (+)
operation is described in more detail by the discussion of equations (G-4) and (G-5) in
Appendix G.

With D and d in hand, the covariance domain representation may be adjusted
according to the following equations which are derived in Appendix I.
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-1 TIic - u> O Cu ..)1  v 12a)
T =C -C (u)D(I+C D)D- D(U) +C(IV-D -

T = Y T + CT (u) (I+DC uu) d-CT (u) D(CD T (u), (IV-12b)

K = K - log det(I+C uuD). (IV- 12c)T UU

In the equations (IV-12), I is the 2k x 2k identity, YT (U) is the subvector of YT
corresp.' , g to the index set u, Cuu -- (CT )uu is the submatrix of Cr corresponding
to the index 't u, and C T (U) is the submatrix consisting of *hose columns of CT which
contain Cuu. Also, as shown in Appendix I, I+CuuD and I+DCuu are nonsingular, so
that the equations (IV-12) make sense. Moreover, 2k will generally be a modest
number, so that taking the inverses will be computationally reasonable.

Thus, to apply an operation involving a marginal constraint or a contact datum
according to the methodologies mentioned below, one need only construct the appropriate
matrix D and vector d and invoke the equations (IV-10)-(IV-12). Although the time step
increase operation is similar in form, it is handled separately, for reasons that will
be made explicit later. As far as the other operations are concerned, the equations
(IV- 10)- (IV- 12) may be viewed as a subroutine which may be called to accomplish the
operation, given the appropriate D and d.

The "information adjustment" view made explicit by equations (IV- 10) and (IV-11)
will later play a central role in showing that the operations to be discussed shortly may
in fact be performed in any order, in accordance with the requirements made at the
outset of this section.

Now, the different operations will be discussed in turn, with technical details
consigned to appropriate appendices.

Marginal constraint. A marginal constraint refers to the assertion that some
marginal distribution of the UPD is equal to a specified (Gaussian) distribution. This
operation is intended to reflect a priori suppositions about target motion. Its
application will take the following form. If u f {u1... Uk1 is a set of indices, let

z(u) be the random vector

I
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thus, z(u) is a "subvector" of the random vector ZT defined by (IV-4). The marginal

distribution for z(u) is desired to have first and second moments given by

E(z(u)) d u, Var(z(u))= . V-13)u u

Thus, it is desired to constrain 7T 9 in the sense of Appendix H. so that z(u) has the
Gaussian distribution with mean fu and covariance matrix %. The distribution for
Zr obtained by constraining the UFD in this manner will be called the constrained
prior distribution (CPD).

The "information adjustment" quantities needed to accomplish the marginal
constraint (IV-13) are

-1 -1D = u-(Buu (TV- 14a)
u uu

= UU- (U), (IV-14b)

where Buu = (Br )uu and T (u) are defined analogously to Cuu and -yT (u) in equations (IV- 12).
Equations (IV-14) assume that no other marginal constraints are already incorporated in
the modified distribution. These quantities may be used if contact data has been
incorporated; however, if other marginal constraints have been applied, then the
quantities given by equationi (IV- 16) below must be used.

Suppose it is desired to remove the marginal constraint (IV-13). A typical and

important instance when this may happen is when 4u is a block diagonal matrix
representing all the constraints which have been applied (and not subsequently removed).
If no other constraints are to be "left behind," then form the quantities

-1 -1
D = (Bu) - u  (IV- 15a)

uu u
-1 -1

d = (Buu) 1T M ¢u 1u (IV-15b)

which are the negatives of those in equations (IV-14). Applying the equations (V-10)- IV- 12)
will remove the constraint's effects from (the representations in each domain of) the

modified distribution. It is worth reemphasizing that (IV-13) is assumed to be the only
marginal constraint (or all of the constraints, viewing iu as described above) reflected
by the modified distribution.
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Note that the adjustments that are described by equations (IV-14) and (IV-15) are
functions not only of the constraint parameters 0h and qsubut of the UPD parameters
13, and BT. In fact, -It and (Buu)- 1 are the information matrices for the marginal
distribution for z(u) in the CPD and UPD, respectively. In applying equation (IV-10),
the difference between these matrices is added to (or subtracted from, in the case of
removal) that part of the "prior" information matrix corresponding to the index set u.
The reader should beware that this is not a replacement operation. Similar remarks
apply to the information vectors. This dependence on the UPD parameters underscores
the fact that, theoretically, the marginal constraint operation is an operation on the
UPD.

However, the operation suggested by equations (IV-12) and (IV-14) could, in fact,
be applied to any (Gaussian) distribution, in particular the CFD. In the latter case,
Buu and OT (u) should be replaced in (IV-14) by Cuu and Yr (u), respectively. It is to
be emphasized that doing this after applying a constraint via (IV-14) does not apply
both constraints to the UPD,

If no constraints are present in the modified distribution--i. e., if the distribution
is the UPD or only contact data have been incorporated--then the constraint (IV-13)
may be applied by using the quantities (IV-14). However, if constraints are already
present, then proceed as follows. Let u = {ul,... ,uk} and v = {vl,.... v1} be
(disjoint) index sets and, for notational simplicity, suppose that ui < v. for all i and j.
Suppose a constraint corresponding to u has already been entered, and it is desired to
add a constraint corresponding to v. Let u' = {u 1 .... ,uk,vl,...., v t,

S=(B uu) Buv,

T=B -B 5,
vv uv S

where Buv= (By)uv is defined according to equation (G-6). Then the required "information
adjustment" quantities are:

D = L )v (IV- 16a)

d -- OT (u') {+ v&'(IV- 16b)

-6 v-
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where the (+) sign has the same essential meaning as before, on~y this time v is the
pertinent index set. It should be noted that using equations (IV-16) is equivalent to
applying equations (IV-15) with u and then applying equations (IV-14) with u'; i. e.,
removing all constraints and then putting back all constraints, old and new.

If the constraints corresponding to u and v have been incorporated into the modified
distribution and it is desired to remove the constraints corresponding to v, then the
pertinent information adjustment quantities are the negatives of those in (IV-16).

The relations in this subsection are discussed in Appendix I.

Incorporation of contact data. A contact datum is a numerical quantity or set of
quantities assigned to an observation against a target at one of the sampling times.
Such an observation may come from within or from outside of the screen. Two types
of observations are considered in the model, a position estimate (or "SPA") and a line-
of-bearing (LOB) contact. Different information quantities are assigned to each.

A position estimate at time t refers to an estimate 6 of the target position at time t
together with a 2 x 2 positive definite symmetric matrix A. The uncertainty in the
position estimate is presumed to be bivariate Gaussian with mean zero and covariance
matrix A. Hence, if Z,. is the target's track and Dt(6) denotes the event that an
observation at time t culminates in the position estimate 6 for the target at time t, then

pr{D t(6)1 Z =Z} = n(6 ;zta), (TV-17)

where zt denotes that component of Z corresponding to target position at time t (see (IV-4)).
According to equation (IV-7),

pr{ Z .=Z = n(Z;y T ,C ). (IV-18)

To obtain the posterior distribution,

pr{ZT=ZIDt(6)} = n(Z;y TC )

'ho di st ributions of (IV-17) and (IV-18) must be combined according to Proposition (H-4).
r,-, that proposition it follows that the information adjustment quantities required to

'r I,m..nt equations (PV-10) and (IV-11) are

-1
D = A , (IV- 19a)

d = A 16. (iV- 19b)
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The development of the necessary information adjustment quantities for a LOB
contact, whose geometry is illustrated by Figure IV-i, proceeds a bit differently. The
development is parallel to that which yielded the information quantities for LOB contacts
in Chapter III.

A LOB contact is the assertion that at time t, the target was observed at bearing B
(measured from north) from a sensor at position (ut, vt). Let R be a nominal range from
the sensor to the target (cf. equation (E-4)); such a range might be a "range of the
day." Let the uncertainty in the bearing measurement be denoted by E B' so
EB = B-B 0 , where B0 denotes the true bearing from the sensor to the target. Finally,
denote the components of zt, the target position at time t, by (xt, yt ) .

Begin by arguing, as in Appendix E, that if E B is small, then

E B sin EB = sin(B-B 0 )

=sinBcosB 0 - cosB sinB 0

sin B -cos B
R R

the last equality being evident by Figure IV-l, and implying that

yc t sin B - vt sin 3 -xt cos B + u cos B. (IV-20)

Now if

Dt(E) = ut cos B- vt sin B

and

AB = [0, .. cos B,-sin B,... ,0],

where AB has zeros in all component slots except those corresponding to zt = (xt, yt)T,
then (IV-20) can be rewritten as
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1

FIGURE IV-1

GEOMETRY OF A LOB CONTACT

Notes: 1) Grid is in nautical mile units, with positive y-axis as north.

2) B is true bearing, as opposed to estimated bearing B.

2
3) Bearing error EB= B - B0 is Gaussian with mean 0 and variance B*

y

u - t, Yd t

I Target position

B 

(ut. ,rt)

Sensor position
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Dt(c) = ABZ + REB, (IV-21)

where ZT is, of course, given by (IV-4). If f B is viewed as having a one-dimensional

Gaussian distribution with mean 0 and variance 2, then the version of equation (IV- 17)

corresponding to the LOB contact is aB

2

pr{Dt(c)= 61ZT= Z} = n(6;ABZ ,R 2 a 2 . (IV-22)

(Note how the "range of the day" merely becomes a weight for the bearing uncertainty

distribution.) Finally, combining the distributions of (IV-18) and (IV-22) according to

Proposition (H-4) implies that the information adjustment quantities corresponding to

the LOt contact are

Ti A 1 I cos 2B -sin B cos B1D B _22 B 22 (IV-23a)
B 2B R 2Ba 2-sin B cos B sin2 B

T 1 u cosB- vt sinB cosB

BB

A contact datum which has been incorporated into the modified distribution may

be removed by using the negatives of the corresponding information adjustment

quantities. Note that the information adjustment quantities do not depend on any prior

covariance structure; hence, contact data may be incorporated in any order, without

having to resort to special forms as in the case of the marginal constraints.

Time step increase. The purpose of this operation is to extend the time interval
over which the target track is studied from [0, tr ) to [0, t 7 +,). Its effect on the

distribution will be to increase the dimensions of the covariance matrix from

(2T +2) x (2T +2) to (2T +4) x (2T +4) and the dimension of the mean vector from (2r +2) to

(2r+4). Like the marginal constraint operation, the time step increase Is technically

applicable to the UPD. However, it will be seen shortly that the adjustments to the
UPD may be used to update the modified distribution directly. The formulas below apply

to T > 1; the cases r = 0 and r = 1 differ only slightly and are made explicit in

Appendix J, which contains the derivations of all the formulas.

The UPD will be considered first. From the relations (IV-5) comes

OT + =
(IV- 24)PT• P (T)+6 V_



Next,

B
1
+ [ H , (IV-25)

T T +1, T+l1

where

H = [I' I~
TT

and b T+1 1 may be constructed from B Taccording to the recursion of equations (IV-6).

In order to describe how the time step increase affects the normalization constant and the
information domain representation of the UPD. some auxiliary quantities must be derived
and discussed.

Let S = B- 1 H._ and T = b 1 - HTS. As shown in Appendix J, the relations
(IV-6) imply that these have the particularly simple forms:

S = -eTI (IV- 26a)

where I is the 2 x 2 identity, and 0 is a (2T -4) x 2 zero matrix; and

T = b +, -e b (1+e )b T  (IV- 26b)T4lT- 7" T+I,T-1 +I~-,T(I

This may be rewritten, using equations (IV-6), as

T = 82r - 2 2  r (IV-26c)T T" T T-1 T-1'

The derivation of equation (IV-26c) is given in Note 3 at the end of this chapter.
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Now, the normalization constants satisfy

K = 0K + 2 log 2w + log det T. (IV-27)
T4-1 T

(Here and henceforth, a superscript o signifies that the quantity pertains to the UPD.)
Next, let

L = [ IT [-ST I].

It follows from the equation (IV-26a) that the (2T+4) x (2"+4) matrix L may be written
as

where Q is the 6 x 6 matrix defined by

Q = -(l+e T)I T-I[e TI -(I+e T)I I].

SIT

Thus, due to the simplifications of (IV-26), L Is essentially a 6 x 6 matrix, a fact
not necessarily true of the analogous quantity L employed in equation (IV-16).
(These various simplifications say that the time step increase T - T+1 involves only
the time steps T-1,7 and T+1. This will be seen to hold for the modified distribution
as well.)

Now the information domain counterparts to (IV-24) and (IV-25) are

o + L, (IV-28a)+0L

I + L (IV-28b)
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Now, let (Cr, Vr) and ( 4r ;) be respectively the covariance domain and
information domain representation of the modified distribution for ZT. In particular
all constraints and contact data reflected by this distribution are presumed to pertain

to time preceding tr . The following formulas give the corresponding parameters for

ZT + 1, subject to the same modifications.

[(CST T+CS TCS]
C = (IV-29a)T 1 1C T S) T  STCT

where S and T are given by equations (IV-26);

T~1 (1-e )V ()+6 V -eT (YT (T-I)--6 ) J (IV-29b)

*T+1 ]+ (IV- 30a)

where L is taken from equation (IV- 28a);

= + Lp3+ L + [ -e6 _i1ri )  (IV-30b)AT + L0T1+[S 16VT T T lT1)

The normalization constants are related by

K+ 1 = K T + 2 log 2r + log det T. (IV-31)

The equations (IV-29), (IV-30), and (IV-31) are derived in Appendix J. It is
also shown there that if the modified distribution coincides with the UPD (i. e., no
constraints or contact data have been incorporated), then the above formulas reduce
to the formulas (IV-24), (IV-25), (IV-27), and (IV-28). The special cases 7- 0 and
T = 1 have also been consigned to Appendix J.
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Note that the methodology of equations (IV- 10)- (IV- 12) is not applicable in the
case of a time step increase, since dimensions are being increased in this case. The
resemblance of (IV-30a) and (IV-30b) to (IV-10) and (IV-11) is worth noting, however,
if only for independent interest.

Overview

According to the modified distribution which was the subject of the preceding
section, the probability (density) of a particular target track over [0, tT ) is given by

pr{Z =Z}I = exp - ~[(Z_.Y )T 9(-y)I+K1 (IV-32)

(cf. equation (IV-7)). Thus, only knowledge of -yT ,9r , and KT are needed to make
probabilistic statements about the target's track over the time interval in question.
However, it is evident from equations (IV- 12b) and (IV- 12c) that knowledge of CT is
required to modify YT and KT so as to reflect the effects of a marginal constraint or
contact on the target. Moreover, it is clear from the discussion of the time step
increase operation which appeared in the previous section that B7T must first be subjected
to the time step increase before the latter is applied to the modified distribution; see
equations (IV-26b) and (IV-29a). (Actually, only the last four columns of B , together
with the values of v T-1 and vT are needed for the time step increase. ) B T and O
also play a role in the marginal constraint operation.

Therefore, in order to be able to invoke equation (IV-32) in its proper form when
desired, it is necessary to keep proper track of the following parameters:

pT. BTT ,CT7,,K

Table IV-1 shows the equations from the previous section which accomplish the
appropriate observation for each of these quantities. In Table IV-1, a "modification"
refers to an operation related to a marginal constraint or a contact datum; it is
assumed that the appropriate quantities D and d have been constructed. Recall
also that the time step increase requires that certain quantities S, T be constructed
from B T . Furthermore, equation (IV-29a) can be somewhat simplified, as pointed
out in Appendix J (cf. equation (J-16)ff. ).

-
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TABLE IV-1

EQUATIONS GOVERNING OPERATIONS ON THE DIOU FOR REQUIRED
DISTRIBUTION PARAMETERS

Note: Equation numbers are those appearing earlier in this chapter

Modification with (D, d) Time Step Increase

OT  --- (IV-24)

B T--- V-6)

C (IV- 12a) (IV- 29a)

YT (IV- 12b) (IV- 29b)

IV (IV- 10) (IV-30a)

K (IV- 12c) (IV-31)
T

Finally, suppose that (Dl, d1) .., (Dn. dn) are information adjustment quantities
corresponding to a sequence of modifications to the modified distribution within a
given time step. Then equations (IV-10) and (IV-11) imply

T -- (+)DI(+)" (+)DO (V-33)

qT="T(+)dl (+ ) ' ' (+On(V- 34)

In equation (IV-33). each quantity to the right of a (+) sign is to be incorporated into
a (2T+2) x (2T+2) matrix; e. g.,

(+)D 1 (+) D 2 = ) D1 ) (+)D 2

A similar remark applies to equation (IV-34). However, it is evident that this "addition"
Is commutative. A corollary of this fact is that the order of modification operations
within a given time step--i. e., for a fixed interval [0, tT) under study--is immaterial.
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(Cf, the discussion of equations (1-12) through (I- 16).) In fact, more may be asserted.
The derivations of equations (J- 14) and (J- 18) in Appendix J show that a modification
may be applied either before or after a time step increase T - T+ 1, so long as the
sampling times involved in the modification precede tT . Therefore, as required, the
operations described in the previous section may be executed without regard to order.

Relationship to detection and localization measures. This chapter closes by
indicating briefly how the elements of the target motion model figure into the detection
and localization measures described in the previous chapters.

The detection probabilities derived in Chapter 11 are computed against "sample
paths" of the target motion process which has been the subject of this chapter. More
precisely, such a sample path is a draw from a normal distribution with mean YT and
variance CT ; cf. equations (IV-4) and (IV-7). To reconcile notation between the two
chapters, if

z
T

is such a track, then snapshot probabilities against this track are computed for times
to, ..., t and are denoted in the notation of Chapter II by pj(zt1 , tj) for i =0 ....

(see p. 23).

These snapshot probabilities serve to construct the observation probabilities Pn
used in Chapter III to construct the "expected" information quantities and concomitant
localization measures. (See the footnote on p. 42. ) Note that for the purpose of
defining the localization measures (and only for this purpose), the model assumes that
target's course has constant velocity (course and speed). Thus, despite apparent
similarities, the information adjustment quantities for LOB contacts and position
estimate constructed in this chapter are fundamentally different from the information
quantities constructed in Chapter III.

Notes

We conclude with some miscellaneous notes.

Note 1. This note demonstrates th t the process given by (IV-2) is not Gaussian.
IfI and T are 2-vectors and q = exp-ft2 ,(x)dxJ. and if denotes the characteristic
function, then
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(r 1 2T = f f exp (TTt2+TT t2) d PR(t

= q f expfji(T + )T 2T id Pr(Qt)

+ (-q) [f exP(i T T )d Pr( t) [f exp(i T  )d Pr( t)]If 1lq 1x~~ t2 2t 2  2d

so

O(T1,T" ) =qexp 2  2 T (T +T2 + (I-q) exp I (T T+T T T 2

using the fact (from reference [p], e. g. ) that the characteristic function of a
Gaussian distribution with mean m and covariance A is

T 1 T
4(-)T exp(iI T-jT AT).

That the expression for O(r 1 ,T 2 ) above cannot be put in this form (the former being a
weighted sum of exponentials) implies that ct and Et are not jointly Gaussian. Hence,

neither is the exponential correlation procesJ, whiciCserves as the physical model for
target motion.

Note 2. The purpose of this note is to show that the covariance matrix B T  Var(Z.)
satisfies the relations (IV-6). To begin, set boo = cov(zo, zo) = Var(zo) and ho0 = 0, and
define:

b.. = cov(z, z.) i,j =0, 1, T..

hij cov(zi, 6 j_ 1Vj_ 1)

ij V~ 19 3-- i
= cov(zt, 5 Ej 1.
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Now, j.J-1

bo' = cV(Zo' Z0  Y 0 6kVk) coV(zo, zO)
k=O

since the initial distribution is independent of the GOU process. Thus, if h0 j 0 for
all J, then the quantities b j and h0j satisfy the relations (IV-6b) and (IV-6d) for all j.

Next, note that cov(Vi, Vj) = cov(Ei, ,Ej) for all i and j. Hence,

h = cov(z 1, 6 0V0) cov(50V0 , 6 0V0 )

2 2
= 60 F0 =h 0 1

+ 60 F0,

and, if i > 1,

h.i = cov(zi, 6 iV 1)

= cov(zi_ +6 i_ Vi_ 1, 6 V,_ 1)

h. + 62 r= i1,i+ i-li i- ,

which is (IV-6f). Now, if k < 1, then

tI

cOv(Ek, /) = exp[4 /(x)dx] Fk

kt 1 ft 1k
L e tk( jt(x)dx exP ft JL(x) rk

rt
exptf 1 (X)dx cvek, ft (~

a exp(-6 1 lPlIll) cov(Ek, el- 1);

soif 1 < I<J, then
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h = cov(z., J 'jE 1 )

=2: 
6 k 6jlcov(E k9c C -1

k=O

i-1

=~ ~ j 1: k6 .exp( 61. M 2 cov(Ek E. 2

k=O k6j 2 2 k -

1 i-1
= s--exp(- 6. 2 t 6k 6j~ cov(Ek E.6j- 2 j- - _= kj2 k -

=e hj- 1 i, j- 1'

which is (IV-6d).

Finally,

b.. =cov(z., z)
13

= cov(zi z + 6 V (by I V- 3)
' j-1 j-1 1

= cov(z 1 z. 1  + cov(z.v 6 V
i, j1' j-~1 i-i

bi,jH-+1 ij*

giving (IV-6b); and (IV-6c) holds because

b. cov(z., z.)

(b 1i T

Thus, the relations (IV-6) are established.
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Note 3. This note uses the relations (IV-6) to derive equation (IV-26c) from

(IV-26b). The derivation is due to Dr. D. P. Kierstead.

A simple induction argument using equations (IV-6) shows that the matrices bij
are symmetric for all i, j. Then, beginning with equation (IV-26b),

T b r 11,T I* e b - (Ie )bT

S , + e - e, T b - h 1)b
h T+I,7 + Te ,T -1 T h -1 +- b T +I- 1,T

=h + e (b -b h
T+1,T+1 T T-1,T+1 T,T+l

= h + e ib T  +h -b -h r~)

Th ,+ eT bT-1,7 r1hr+- T,T- 7 ,+

+hTI+1 r-b l-h -h 1

e T h -h -h,+ )

"r+1,r-+1 hI" -1,7r+1 7-r 7,-

2i =h + 5r +e h -e h -e h •
,T+1 T T T 7-1,7+1 7 77 "r T ,T+1'

applying equation (IV-6d) to the first, third, and fifth terms gives

2 e2 2T= 21 +-eh -e~h
T T T T-1,T 7 TT

Applying equation (IV-6f) to the middle term and making the evident cancellation gives

T 2 - 252 r-
T 6 2 e26 2_r

T T T T-1 T-1

which is equation (IV-26c).

I
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Symbol Definition

Var(X) Covariance matrix of the random variable X

Cov(xy) Covariance between x and y

dimQ,) Dimension of the vector v

o As a superscript, implies that quantity pertains to the
UPD

0 As a subscript, symbolizes an initial or reference value

MT Transpose of the matrix M

M iSubmatrix of the matrix M corresponding to index set uuu
(see equation (G-2))

M Matrix of columns of M containing elements of M (see
equation (G-3)) uu

Identity matrix

Iu  Matrix M such that Muu = I and all other elements are
zero (see Appendix G)

x(u) Subvector of the vector x corresponding to the index
set u (see equation (G-1))

Power sum (see equation (A-3))

(-) Submatrix .or subvector addition (see equations (0-4)

and (G-5))

Sum notation (is zero if lower index exceeds upper index)

7r' Product notation (is one if lower index exceeds upper index)

Variables and Abbreviations

Symbol Chapter/Appendix Definition or Use

A(B) E Rotation

AA A Array attenuation

AN A Omni-directional ambient noise
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I
Symbol Chapter/Appendix Definition or Use

B E. IV Bearing

B E Orientation of SPA nn

B T  IV UPD covariance matrix at time tT

BB A Broadband

BL A Background level

BN A Background noise

bij IV Cov(zi, z.)

C T  IV Covariance matrix at time tT of the
modified target distribution

CPD IV Constrained prior distribution

c' B Index of time of peak instantaneous
or snapshot probability (unimodal formula)

c'(4) B c' for particular sampling outcome t

cdp II Cumulative detection probability

cip III Cumulative localization performance

D IV Information adjustment matrix

Dt(6) IV Detection event at time t yielding
position estimate 6

Dt(c ) IV Detection event at time t yielding bearing
with error E

DI A Directivity index

DIOU IV Discrete IOU Process

D(t) II Detection function

d IV Information adjustment vector

-79-



Symbol Chapter/Appendix Definition or Use

E~ (t) If Expected number of contacts at time t

En III Aggregate measurement noise vector

eIV See equations (IV-6)

F nn-1E Used to construct L nw 'Z nn+1for

n, n4-1 ~bearing observationnn1 nn-

FOM A Figure of merit

G nn1E Companion to Fnn1

GOU TV Generalized Ornstein- Uhlenbeck Process

H T IVb1.T1

HVU II High Value Unit

h jIV Cov(zi 6 j1E -1

G The matrix [1 01

I NII Intensity of interfering noise
LN

I II Intensity of target signal
S

IFKF Information Flow Kalman Filter

IFKF (CO) IFKF for correlated observations

IOU IV Integrated Orn stein-- Uhlenbeck Process

IIII, IV Information matrix

III "Expected" information matrix

n, n+ 1 III Information matrix increment in IFKF (CO)

i JN I1 EaIN)

K . IV Normalization constant
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Symbol Chapter/Appendix Definition or Use

L IV Information matrix increment for time
step increase

L III Aggregate measurement coefficient
n matrix

L 1 III Auxiliary quantity used in IFKF(CO)

L IV Information matrix increment in marginal
constraint operation

1A) B Lapsed time since last sample before one
at ti, in outcome

I III Measurement coefficient matrix

n III Auxiliary quantity in JFKF (CO) related
n

N III Var(E n)

NB A Narrowband

NL A Noise level

O D Orthogonal matrix

OU IV Ornstein-Uhlenbeck Process

P III Var(X)

P G Permutation matrix

PF II, B Cumulative failure probability, 1-cdp

PIM II Position and Intended Movement

PL A Propagation loss

PaU Probability of availability

P Probability that nt h observation is made

p1  B Snapshot or instantaneous detection

probability (for unimodal formula)
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Symbol Chapter/Appendix Definition or Use

pj(z, t) II (Snapshot) probability that sensor j is in
contact with target at position z at time t

Q IV Matrix to which L reduces

QQQ II, B Variable. related to Q(n), used in SCREEN
iteration for PF

Q(n) B Auxiliary variable used in actual iteration
for PF (unimodal case)

R E, IV Nominal range from sensor to target

RL A Reverberation level

RRR II, B Variable, related to R(n). used in SCREEN
iteration for PF

R III Square root matrix in IFKF (CO)n

R E Range nn

R(n) B Auxiliary variable used in actual iteration
for PF (tuimodal case)

III Kalman filter residual

III Information residual
A

* III "Expected" information residual

61%, n+ 1 III Information residual increment in IFKF (CO)

r II Expected time between looks

S, S III, IV, G Auxiliary quantities used in relating
inverses of partitioned matrices

SPA E, IV Search Probability Area

SSS lI, B Variable, related to S(n). used in SCREEN
iteration for PF

S(n) B Auxiliary variable used in actual iceration
for PF (unimodal formula)
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Symbol Chapter/Appendix Definition or Use

S(n, j) B Subset of sampling outcomes

SE A Signal excess (FOM-PL)

SL A Source level

SNR A Signal-to-noise ratio

s E x-component of target velocityx

S E y-component of target velocity

T, I2 III, IV, G Auxiliary quantities used in relating
inverses of partitioned matrices

TEMPI 1I Variable used in SCREEN iteration for PF

TMA I, III Target Motion Analysis

TS A Target Strength

Un, n+ 1 E Used to construct Ln, Z for SPA

UPD IV Unconstrained prior distribution

u,un, Ut E, IV x-component of sensor position

u IV, App. I Index set

u B Time until next sample after one at t.,
in outcome

u(t) IV OU velocity process

Vn  III Submatrix of Nn+ 1

Vn,n+ E Companion toUn, n 1

Vt , Vn  IV Target velocity

V ,V, " t  E, IV y-component of sensor position

W A Bandwidth

TWn III w Wnn n
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Symbol Chapter/Appendix Definition or Use

W t(s) IIHistorical weight function

11n Weight matrix for observation n

X IIState vector

.TIII, IV Information vector

XIII "Expected" information vector

XIII Information vector increment in IFKF (CO)

X(t) TV ftu(s)ds

x, nxt E, IV x-component of target position

Y'tE, IV y-component of target position

Zn III Aggregate observation vector

Z n, III Auxiliary quantity used in IFKF (CO)

Z IV Target track through time t
T* T

ZMt I Target position at time t

th
Zn I n observation vector

z i= z tiIV Position at time t.

B 1- exp[- X(t.- t i 1 )]

fiTIV UPD mean vector at time t1

r r. IV Covariance function in GOU

tIV E(ZT) according to modified target
distribution

IV Covariance matrix of position estimate
error

6 IV Position estimate

6 .)Il Dirac delta function
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Symbol Chapter/Appendix Definition or Use

6 t II Interval length

E III Measurement noise vector

Et IV Random component of target velocity

E B E, IV Error in bearing measurement

E R E Error in range measurement

A D Diagonal matrix

x II Detection sampling rate

Ou (x) IV Function used to describe exponential
memory

vt, Vn IV Mean of velocity process

i B Sampling process

Iri II "Look" probability

Pg II Correlation constant for group g

Pj III Correlation matrix between ith and jth

observations

jP19' P2 E SPA correlations
B E Correlation between bearing measurements

PR E Correlation between range measurements

2
11 Signal fluctuation variance

2 2 th
(F1, n'0r2, n E Principal variances of n SPA

2 III Var(ci2

2 IV Variance in bearing measurement

u TV Covariance matrix for marginal constaintu distribution

IV, Note 1 Characteristic function
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OUIV Mean of marginal constraint distribution
max

On B 1<i<np

OnI, B min 1pn- 1 ,p}

Ui1 Mean integration time



APPENDIX A

SONAR EQUATION USED IN SCREEN

This appendix describes the form of the sonar equation used in SCREEN. The
formulation given here is compatible with the Acoustic Baseline, reference [i].
The active and passive equations are described in the following sections, and have
been implemented in FORTRAN on a PRIME 400 minicomputer as parts of SCREEN.

Detailed descriptions of target, sensor, and environment files beyond anything
mentioned In this appendix may be found in the User's Manual, reference [a].

Passive Sonar Equation

The equation used for narrowband figure of merit, FOM (NB),and broadband
figure of merit, FOM (BB), correspond to equations (2-11) and (2-12), respectively,
of reference [I]. The equation is:

RD for narrowband

FOM = SL - BN - (A-i)

RD-10 log W for broadband,

where the terms of (A-1) are defined and stored as follows. (Note: the SCREEN
program is interested in signal excess, SE, which equals FOM-PL where PL is the
propagation loss.)

SL = target source level. This is stored in the target file, TARGXX, as a
function of time. Each target file corresponds to a specific target type and screen
penetration tactic.

RD = recognition differential. This is stored in the sensor file, SENSXX.
Each sensor in the file corresponds to a specific sonar type and frequency or frequency
band of operation. If narrowband, RD Is stored; if broadband, RD-10 log W is stored.

A-1
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BN background noise. The formula for background noise is somewhat more

complicated than appears in reference [I] because all interfering noise sources are

explicitly considered. The equation used is the power sum:

N

BN (AN-DI) Q (LN-SNR) 0 (RN-AA-PL) (1) (RNi-AAi-PLi), (A-2)

where C0 denotes power sum

a 0+ b l0g10a log10 b10 =10 + 10 (A-3)

the first three quantities correspond to the formula for BN which appears below

equation (2-11) in reference [a), and the remaining quantities are the interference

due to task force noise sources such as HVUs.

The two quantities AN (omnidirectional ambient noise) and DI (directivity index)

are storedin the environmental file. The first, AN, is indexed to correspond to a

specific propagation environment; and the second, DI, is indexed to correspond to a

particular set of sonar aspect contours. Note that a given set of sonar contours is

for a specific sonar, operating frequency and operating mode.

A nominal value of (LN-SNB) 0+ (RL-AA-PL) is stored in the sensor file SENSXX.

This is a function of time. Changes in this value for different beam directions are

stored in the environmental file as the aspect contour labeled "DELTA (LN-SNR)."

The actual value of this quantity at a given beam direc'ion is the algebraic sum of the

nominal value stored in the sensor file SENSXX and the value given by the aspect contour.

The values (RNi-AAi-PLi) are computed separately for each HVU unit. The

radiated noise of the ith HVU, RN i , is stored in the sensor file, and is frequency

dependent. The array attenuation against this noise, AAi, and the propagation loss,

PLI, are determined from the beam pattern of the array and the convoy geometry.

The received energy is reduced by cos (Bxx 60) for up to 3/2 times the beamwidth,

where x is the angle between the bearing of target (signal) and the bearing of the

Interference (noise).

Active Sonar Equation

The equation used for Active Figure of Merit corresponds to that given by

equation (2-7) of reference [1]. The equation is:

FOM = SL + TS - BL. (A-4)
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SL sensor source level. db//lp PA at 1 yard. This is stored in the
environmental file along with the RL curve
described below.

TS = target strength. db//lp PA at 1 yard. This is stored in the
target file.

Only the Background Level requires special comments.

BL = background level. db//lp PA. The background level depends
on whether the system is reverberation
limited or noise limited. The equation for
BL is (2-8) of reference [l].

BL = RML ® NML

where (Z) denotes power sum,

RML = RL®RDr,

and

NML = NL(+)RDn;

RDr = recognition differential in a reverb-
eration background. This is incorporated
in the RL curve, described below.

RDn = recognition differential in a noise
background. This is stored as RD in the
sensor file.

NL = noise level. This is given by (2-1) of reference [i]. The
form of equation is identical to the passive
equation for BN, equation (A-2), and is
evaluated in precisely the same way.

RL reverberation level. This is provided for specific environments
in much the same form as the propagation
loss. See reference [i], Figure 3-1 for an
example. The quantity RL + (RDr-RDn) is
tabulated in the environment file much as is
the PL curve.

A-3
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With the data stored as indicated, the effective calculation of BL Is:

BL = (iRL + (BDr-IlDn)) + (NL) + RDn,

which can be seen to be equivalent to the above expression for BL.

A-4



APPENDIX B

THE JUMP PROCESS WITH RANDOM SAMPLING

This appendix develops and discusses the cumulative detection probability
algorithm for the jump process with random sampling. Most of the material in
what follows appeared originally in reference [k].

For the purposes of this appendix, it is assumed that snapshot detection
probabilities, P 1 , Pn and sampling probabilities o 1 ... O 0n have been determined
as discussed in the main text. The underlying detection process is a (X , a) jump
process. It is desired to compute the cumulative failure probability, PF(n).

The following notational conventions are used in this appendix. Sums, Z, and
products, H, are zero and unity, respectively, whenever the lower bound exceeds
the upper bound. The symbol x denotes (1-x).

The Unimodal Formula

L According to reference [b], Theorem IV-1, if a unimodal jump process is sampled
at a subset of times ti, Pi is the detection probability at ti. the jump probability pi is

defined by

- -A (ti-ti_ i)

= 1- e

and c is the index such that pc = jxnp., then the cumulative detection probability at

time tn, Pn, is given by <

c-1 n
P 1-p 11 (1-po. lPi) I (1-P). (B-i)Pn i=1i=c~i

I

B-1
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Note the obvious fact that if the process is unimodal over all the sampling times It,
then it Is also umimodal over a subset of sampling times.

A consequence of the mathematical development given below is that (B-i1) is
equivalent to the following iteration. Let PF(n) = i-Pn. Then

PF (0) = 1,

PF(i) = Pig

_PF(n-1) -F-n+ne X (tn tn- 1)1 o n>2PF (n) =-- 40n~z~+n o 2

where (B- 2)

Oln maxPi9
i<i<n

On = min(p n-1pT).

it is believed that this is a new result for the unimodal jump process.

To see that (B-i) and (B-2) are equivalent, note the following enumeration of
special cases:

(a) On = p n V In this case, c =n-i1and p <Spn1 so that d = p .Thus, the
bracketed term in (B-2) is the term (i-flnh) in (B-1). (Nkote that 1-On=

Pn4pneXN (tn-tn-..)).

Pb On= Sfld 4 n-1 = n-i- In this case c = n and tb= pn-i* The bracketed
term In (B- 2) is the term (IOn Pn- 1) in (B-i1).
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(c) n-1 > Pn- In this case c < n-1 and unimodality requires that pn <Pn-I'
so n= P and the bracketed term in (B-2) is the term (1-flnPn) in (B-i).

Random Sampling

The SCREEN cdp algorithm is designed to combine snapshot detection probabilities
pi at times tj into a cumulative failure probability PF(n) in the event that the detection
process is sampled randomly, i. e., not all Pi's play. We will now derive the formula
underlying the algorithm.

The following conventions and assumptions are in force. The snapshot probabilities
are assumed to be unimodal; that is, there is some index c' such that

P < Pj I if j < cl,

P. >Pj+ if j> c'.

The sampling process is denoted

= 1 if a detection opportunity occurs at time t }

0 if not

For a given set of times t1 , .... tn, there are 2n possible outcomes of this process.
Hence, for notational simplicity, denote this set by 2n. It is evident that the probability

of a given outcome is given by

n

[ -VH ( j '-j + . 9.), iB-3)
j=i

where ir.. is the probability that t. 1. For a given outcome t , let j(Q) be the lapsed
time since the last sample prior lo the one at tj and let uj(Q) be the tirme until the next
sample after the one at tj. If no sample occurs at tj, then set j= uj 0. Finally, let
c(Q) be that index c such that

P() = max{pi[ .i}.

44Ii
B-3
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it is possible that c(Q) is not unique. However, assuming unimodality, the development
which follows is not dependent on the exact choice of c(Q). A convention might bu
set according to

c(Q) = min{k : pk = max{Pi I=1} } 

To begin the development, note that equations (B-1) and (B-3) imply that

PF(n) = PF(n,4), (B-4)
tE 2 n

where

n [c-i Xul [ -Xi.

PF(n, 4) = rl F i 9i 0i Oi P ciT (Pi+pi e -1') i (Pi+pi e
i= 1 1.' ' L=i1 J i=ci ~

and where it is to be understood that ui, li, and c are functions of . (Recall that the
formula (B-4) assumes unimodality in the probabilities {pi} as described above.
Clearly, any subset of these probabilities is also unimodal. ) The essence of our
approach is to consider equation (B-4) in two cases--n <c' and n > c'-- and to obtain
recursive expressions in each case. The actual SCREEN cdp algorithm will be
obtained in the next section by splicing the two recursions.

Let e e S(n,j), where 1 < j < n and

S(n,J) = 2 2n n=i; j=1; i=O, j+1 < i < n-l} .
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Then

[n- 4 1 1 Oj1

P X(tntj)) (PPie , _i

PF(n, )

where the quantities ui, 1j, and c in the two products are functions of 4>it follows that

n~i~j+10 i 1 [ Fl i ii

n-1 0. Ii  
( + n

-

e- X (tn-
t

t)
-t

[
)

(

1[: i (pi+P e ] T (p +p i ], if n < c'

PC i=II1 i= l (P i JI f n >

n-1 -- X i c

I ;

PF(n, Z) = n I
S(n, J) _i- -+ 1-

XP+ n (tn- tj)) j-1 i i 0
(p~~ ~ ~ n +2nej_ 1  i= ll i e+

P C l (P i+ P i - X+1n (p i P e , i n >

: B-5



Note that the restriction of the sum to the outcomes on t1 , ., t1  does not affect the
values of ui, Ii, and c, with this exception: if, for some outcome E S(n, j), ti is the
last time a sample occurs before tj, then u1 = ti-ti1 , rather than zero. With this
understanding, there follows that

S PF(n,)= (B- 5)
SE.(n, j)

[n-f (Pt tn j)
On id T j ~~ 0. (pP{eF(j)f .= 11, if n > c'

where F(j) denotes the event that no detection was made through time tj. Note that

PF(j) =0.i PF(j-1) +- t) P{ F(j) ~=1}, (B- 6)

and that

*PF (n) = o PF (n- 1) + 0n pn[ IT +~ Z PF (n, t). (B- 7)
n n n i ~=1 J=ItE S(n, j)

Now, fork= 1, .. ,n, let

Then equations (B-5), (B-6), and (B-7), together with the unimodality assumption,
imply that

PF (n) On PF (n-l1) On~ p nS(n) + a n PR (n) Q Q(n)], (B- 8a)

where
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z- ep [i ~(tn- tj) n (PF(j) - -0 PF(j-i)J, If n <c'
J=1 lij

Q (n) =(B- 8b)

n-i1 p Xrn- Li n 1 O~ P~)-- Fji

n] e ( PF(j) -i P F(j-i)1. if n > c'
j~Oi

RJ)= 1 d(B1 c

n

and

R (n)S(n) nci

J-i- IIO

and

S (n) n 0 ~) (13- 9)

and

If n < c, sop p n: n 1 , then

X(tn+1-ti) L. 'n
Q(n+-1) =e On Q(n) +, - [PF(n) - 0nPF (n-i)] (B-i10a)

I O n

R(n+ 1) = o R(n) + - OPF n Fni (B-l10b)
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Ifn > c', thenPn >Pn+ . and

Q(n+l) = en Pnl (P PFn (- Ia)

Q(n+1) e (n) Q(n) - 0 PF(n)-1)] (B-lib)
nn n

pnnPn+ I - n+ I-
R (n+ 1) = On n R (n ) +  - [PF(n) - 0 nPF(n-1)]. (B-11lb)

Pn O

Note in this last case that On =On+ 1.

The SCREEN Algorithms for Cumulative Detection Probability

The SCREEN cdp algorithm essentially Involves using equations (B-10) when
Pn :- Pn+l and equations (B-l) when Pn >- Pn+l, regardless of whether the snapshot
probabilities are unimodal. (Note that when p, = Pn+ 1' equations (B-10) and (13-11)
give the same result. ) Such an algorithm may be described as follows. Initialize by
PF(O) = 1, S(l) = 1, R(O) Q(0) = 0, 00 = 1. Then the iteration is described by:

n =min{n, Pn

F $ ~ = mln{PnPn }n- I'
Zb i n' n

I - (tn+ I- tn) On
Q(n+1) =n e Q (n) + [PF(n) - PF(n-1)

n+n n

(B- 12)
On 1R -1)- Rn) + - [PF(n) - 9 n PF(n-1)l

Pn On

s(n+ 1) -- n s(n)

PF(n) 0 PF(n-1) 0 0 p S(n) + 9 n]{n) - Q~n)J.
n n-n n n
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1

The actual SCREEN cdp algorithm, described by equations (1-13) in the main text,
is a slight recasting of equations (B-12) done with machine implementation in mind.
The modifications indicated there for use with nonunimodal snapshot probabilities
are intended to reduce discrepancies in the value of PF(n) which arise from applying

a "unimodal"-based algorithm in a nonunimodal setting.

The algorithm of (B-12) gives only an approximation to PF(n), even in the
unimodal case. Discrepancies arise because the algorithm essentially ignores the
different forms that Q(n) and R(n) take when n > c' vice when n < c' (cf. equations
(B-8b) and (B-8c)). The remainder of this appendix will examine these discrepancies

more closely. For notational simplicity in what follows, denote c' by c. Recall
then that Pc = max Pi.

The first discrepancy arises in the transition from step c to step c+ 1 and we will

examine it first. Let Q (c+ 1)t be the true value of Q(c+ 1), given by setting n = c+ 1 in

the second of equations (A-8b). Let Q(c±1)e be the value of Q(c+ 1) obtained from Q(c)
by applying the algorithm of equations (B-12), i. e., by "naively" applying equation
(B-11a). Define R(c+l)t and R(c+l)e similarly, and let PF(c I)t and PF(c+I)e be

obtained from equation (B-8a). Then PF(cl)t is the true value of PF(c+-l), and

PF(c+l)e is the value which would be returned by the algorithm of equations (B-12).

It is these quantities we wish to compare. Now,

Q (c+ 1) -Q- 1 pj P+I X(c -t B 3
ec-i l Pc1 e - (tc -t) I [PF(i)-O.PF(j-1)1

1)e - c t =__1 Ic 1 0. c+1 i=j+J

and
" - - (B-14)I R(c+l) -R(cI-1)t = E - H ]PFj) - PF(j-l)J.

. . L c C ¢c+1

Combining equations (B-8a), (B-13), and (B- 14) obtains

PF(c+l) e- PF(c+I) - l P,+ le- c+l

+ - c+ 11 01 [PF(J)- 6.PF(j-)].

0 1  ~+ 1!* -Pc Cj ]=+
'i "°

B-9
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Now, Oc+1 = PC, and ,= pj for j = 1 .. , c; so equation (B-15) reduces to

PF(c+I-)e-.PF(c+I~)t = 0 c+1 j~ c p- l]l=+1j -](FI)I  .Fil)

(B- 16)

For all j, pj < Pc' and hence

Pc P.
C +

-

It then follows from equation (B-16) that PF(C+l)e < PF(c+1)t. Thus, the algorithm

of equations (B-12) gives an optimistic view of cdp at time c. even in the unimodal

case.

e- C+P - -P W
C p.Fot tall for a pc an he...ce

which the quantity
P P.

c P .

is the largest, also contain the largest exponential terms

This "exponential damping" keeps the discrepancy within tolerable limits. Moreover,
since mn = P e if n > c, one may show by retracing the foregoing development that

SB-IO,



0On -A (tn+ r-tc F ) 1 P~ 1e P~ +1tPF(n+l) - PF(n+l)t - e [H0 (PF(ct 1) - PF(c+ )
c+ I L -- c +

so that further exponential damping--and hence an improved approximation to PF(c+l)t--

takes place as the algorithm progresses.

The foregoing discussion pertains only to the unimodal case. However, as

mentioned in Chapter II,studies have shown the SCR FEN cdp algorithm to give good

approximation even in the unimodal case. See reference [j].

Remark. The iterative algorithm for FF(n) given above makes it appear that

six quantities must be carried from step n-I to step n: 6n-l1 Pn-l' PF(n-1), Q(n).

R(n), and S(n). However, this need not be the case, as PF(n-1) is recoverable from

the other quantities. To see this, consider the formula for R(n) given by equation

(B-8c). Note that if n < c'. then pj= j for j= 1 .., n-1. Thus, if

1 if n < c'

c

tin

then, using equation (B-Sd). equation (B-Sc) may be written as

n-1

1(n) c(n) -S(n) [PF(j) - 0. PF0-1)].qn)- cn)XS(j+l) 3

n-' PFj) PF(j-I)1
c(n) 5(n) I r S(j+ i) -5(j

j~ri

( PF (n-i))
c(n) S(n) S(n) - 1

whence

PF(n-) (n) + S(n) (B- 17)
c(n)

follows.
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APPENDIX C

SUMMARY OF DETECTION ALGORITHMS IN SCREEN

by David P. Kierstead

This appendix summarizes how the detection algorithms are implemented in
SCREEN. Detailed program operations are discussed in reference [a].

Snapshot Detection Probabilities

The snapshot detection probabilities (for individual sensors) are obtained from
equation (11-7):

p(t) - l0 logl 0 E[!(t)j n(y;RD, cr2 )dy

(C-1)
-,0 logl 0 E [5(t)]-RD1/I ni _, )n(y ;O, l)dy .

According to equation (11-6),

t
f- E [I (s)]dW(s)

E([ (t)] f t

E[IN(S)]dW(s)

where

dW(s) IL exp (t-s] ds.

In the SCREEN model, it is assumed that IN remains constant over short time
intervals. This assumption, together with the exponential weight function W(s),
makes it possible to compute:
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t
E IN(s)]dW(s) -- tEI[IN(t)ldW(s)

= E[IN(t)]-

Thus,

Js(t)
E [ (t)] =J(t

E[In(t)]
n

where

Jst) t E[s(s)]dW(s),

and 10 log1 0 E[IN(t) ] and 10 log1 0 E[Is(t)I are the terms BN and SL-PL (resp., BLM*
and Sb+TS-PL) of the passive (resp., active)sonar equation. Js(t) may be computed
via the iteration of text equation (II-9a).

In order to implement equation (C-i), the quantity

U(t) = [i0 log1 0 E[!(t)]-RD]/u

must be computed. This computation is performed by the function SENPRB according
to the following algorithm.

Recall the sonar equation

SE = SL-PL-BN-RD.

(This is the form for a passive sensor. In the case of an active sensor, SL and BN
must be replaced by SL+TS and BLM, respectively, throughout.

In order to compute U(t+6), we set:

BLM is a modified form of the BL in Appendix A. The modification makes the
active sonar equation appear as

FOM = SL+TS - BLM-RD.

C-2
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Hw = 10 log 1o(e

HN = 10 log 0 (1-e - 6 / W

H(t) = 10 log 1 0Js(t)-BN-RD-HN '

Then

[ J(t+6) 1 H(t+5) 10lOg1 0  BN/10 RD/10. HN710

10 *10 10

Js(t). 1 0 HW/1O+ 1 0 HN/10 . 
1 0SL-PL/101

10 log 1 0  1 0 BN/10* 1 0 RD/ 10 HN/10

= [H(t)+ HW] CD ISL-PL-BN-RD]

[H(t) + HW] @ [SE];

where 0 is the power sum operation. This gives an iteration for H(t) (called HISTRY
in SCREEN) from which U(t) may be computed according to the formula

U(t) = 10 logj 0 (E[!(t)j) - RD

= 0 logl 0(J(t)) - BN - RD

= H(t) + HN.

CDPs

The computation of cdp for a single sensor is guided by the subroutine PIMAP
and function SCRINF, with most of the computations done by SENPRB and CUMPRB.
In order to obtain meaningful results from the iteration of equation (11-13), it is
necessary to discretize time to intervals (tn, tn+1) which are much finer than the
program time steps. These intervals are determined in PIMAP according to the
criterion:
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No interval (tn, tn+l) may be long enough that the distance
between the target and any sensor decreases by more
than 1 nm during the interval.

Once the time intervals have been chosen, PIMAP calls SCRINF at successive
subincrements. SCRINF calls SENPRB to obtain the snapshot PD pp. If Pn/ 0, then
CUMPRB is called to implement equation (11-13) (with a slight modification). ,'n the
special case that Pn =0, the iteration of equation (11-13) does not work. In this case,
only QQQ must be changed (to be ready for the next iteration). The adjustment is:
QQQ=exp[-X(tn - tn..l)] • QQQ. Equation (11-13) assumes unimodality but gives a
good approximation to CDP even in the nonunimodal case if the following change is made:

In the event that a peak value of p- has been passed and

Pn > Pn-1 (so unimodality is violated and the pi's are increasing),
On must be set equal to Pn and exp[--(tn- tn-1)] must be
replaced by exp [-A (tn -tn_ 2)]"*

Group Correlation

Once the snapshot PDs have been computed for each sensor In a group, they are
combined (as described in the second section of Chapter II) to produce a snapshot PD
for the group. These PDs may be called forth using PDSTEP.

There are two alternative methods for computing CDP for the group:

(1) the group PDs could be used directly, or

(2) CDP could be computed for each sensor in the group, and the results
combined (using the correlation coefficient) to yield the group CDP.

The second alternative is used in SCREEN.

This is an empirical correction. For a discussion of its effect, see reference [j ].
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APPENDIX D

CORRELATION MATRICES

This appendix presents a discussion of correlation matrices pertinent to their
use in this report and, in particular, Chapter III.

Let Y be a random variable with covariance matrix Var(Y). There is an
orthogonal matrix 0 such that

2 0
1

Var(Y) =O T

2

2 Twhere 0l are the principal variances, and 0 is the transpose of 0. Then the
"standard deviation" matrix of Y is defined by

U 0

1T
9(Y) 0 T

n

Y11 [Y211

tIxY and Y 2 , are vector-valued random variables with covariancem atrix kY ,Y ,

L 1m L-.n

D-1
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Covff(Y 2 .. Cov(Ylit y2 j). 1
then the correlation matrix p (Y V Y 2) between Y1and Y 2Is defined by

P (YP Y 2) a I ()' COV(Y 1 ,Y2 )U(Y ' (D- 1)

Note thxat p (Y1 , Y )need not be symmetric even if m =n. if Y =Y 2 then p (Y9 ,Y
Is teIdentity mairix. 1 21 2

Next, consider a sequence of vector random variables

suc tht xI nd i, hih my asobe vector-valued, are uncorrelated:

VarX 1  0vr~i Var~y.) Cov(xi, Y1)0

(The following discussion will pertain to Xi with two uncorrelated components. The
generalization to an arbitrary number of uncorrelated components is straightforward.)
Suppose componentwise correlations are specified:

1 2
P =pi x, iij 1,...(IYj P

Then
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Cov(xig x) Cov(x1 ,y

CovX1 X~)= Cov~yjx) COV~Y 1,Y) 1

U(X)= 1, 0 UX-

it folowsfromequaions(D-1 and(D(D-tha

I Tj

Noalsoj tha(0 sinc o

U (x i
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1

The correlation between Y. and Y. is given by
1 0

I T.= O10 0- 1 OCov(Xi, X )O 0 O. 0j

(Yi) 0; (Yj))

II0 ) ov( L ,0X. 0_

SOT O(D-3)

2
0 ip

Equation (D-3) follows from equation (D-2) and the fact that the matrices 0. are

orthogonal. 
1

If p jMij1 = p lR for m = 1,2 and ij < k then P (Yi, Yj)P (YjYk) = P (Yi, Yk),

for I < j < k. Conversely, consider the following observation, due to Dr. F. P. Engel.

If P!j : 1 < i < j is a collection of matrices satisfying

() PH1 is the identity for all I;

(ii) Pijjk =Pik for I < J < k;

then there is a sequence of matrices An, n = 1, 2,... such that

J

P ij =  A .k 
(D-4)

k=i+ 1

D-4
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Indeed, Ak P pk, k+1. (For example, in Appendix E, typically Ak P ptk+l1tk
where t1 < t2  ... is a sequence of sampling times.) Moreover, if

(iii) P j =Pi+k, j+k for all 1, J, k,

then clearly there is a matrix A such that

p1  
1 -i

'iij

D-5 I



APPENDIX E

THE KALMAN ALGORITHM IN SCREEN

This appendix shows how the correlated-observation algorithm of Chapter III
given by equations (111-13) applies to sequences of observations of the types in
reference [g]. Observations of this type are also addressed in the SCREEN model.
The "SPA" will be addressed first, and given the most extensive treatment. It will
be shown next that bearing/range and bearing observations' information adjustment
schemes are special cases of the scheme derived for a SPA. In fact, all observations
will be seen to have essentially the form of a SPA.

In each example below, the state vector X is

x 0

xV! Sy

where (x0 ,Y0 ) is the target position at a reference time to, and (Sx s) is the (constant)
velocity of the target. Such targets are the focus of reference [g] and the basis of
SCREEN localization performance measures. The actual target motion model in
SCREEN is more complex (see Chapter IV), but localization measures within that
context have not been developed as this report goes to press.

SPA

A SPA (the acronym usually stands for "search probability area") is a position
probability ellipse, centered at a point (xn,yn), which has variances (al n )2 and

(d 2 n) 2 along the axes, and a specified orientation Bn . which will be taken to be the bearing
of the (72 . axis. See Figure E- 1. (The subscript n is an observation index in the
sense of 'equation (111-1). The equation ([Il-1) quantities corresponding to the SPA
at time tn Just described are

E-1



FIGURE E-1

GEOMETRY OF A SPA
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z [x]n Yn

l 1 0  t n- t0  0 ]

n 0 1 0 tn-t 0

The "sth -dard deviation" matrix for En is given by

A (B ) T [ 1 , n 0 A ( B)
O n  n) 0. n] A ( B

where, for an angle B

cos B -sin B
A (B) =

sin B cos B

If successive principal axes are correlated in time--with respective correlation
constants p1 and p 2-- then the correlation between Ei and ej for i < j isV

tj-tl0
p1 0

T I
Pi = A(B i) A(B1 ).

0 tj-ti
0 p 2

These correlation matrices satisfy the conditions (1I-8). (See Appendix D for a
discussion of such correlation matrices.)

Using the orthogonality of the matrices A(Bn) and A(Bn+I), the invocation of
equations (111-14) and (111-15) becomes straightforward. In order to express the
results more clearly, define the auxiliary quantities Un, n+ 1 and Vn, n+ 1 by

E-3
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1

2(tn, I i-t ))

1 1 n+ 10

*n, n+l( a

0 2 (E-i1-b))

L -l 2 2, n+ 1

1

(2(ttn+n-tt n) (tn+1-ntn) -2

*n,n+l 1 Elb

0~ ~ 2 (tn -tn) 2 (tn+1-tn) _

(1- 2 ] 2 (2, n

Then the equation (Ill-15) quantities are given by

(E-2a)
T rU I

L = A(Bn+1) n,n+ A(B n+)-Vn, n+iA(B) tn+iUn, n+ A(B n+)-tnVn, n+1A(B) ,

n A(B )T n A(Bn+ l)zf lVn n+A(Bn)Zn . (E- 2b)

The equations (I1- 16) may then be used to construct the necessary information update
quantities.

Note that the data which must be saved from time step n (corresponding to time tn)
are the quantities:

a 1, n' a2, n ' Bn Xn Y n'

! E-4



Conceivably tn and the correlation constants P, and P2 also "count" toward the storage
requirement. In either case, this storage requirement is approximately equal--in
terms of number of elements--to the storage of an 1 zn and an1 1n, the requirement for
whose storage in the general case was indicated toward the end of the second section of
Chapter III. Furthermore, the computation of the "square root" matrix Rn+1 is
contained in the development of the equations (F-2).

Bearing/Range Observations (Active Directional Sonar)

At time tn a range Rn and a bearing Bn is taken from a sensor position (un, vn).
The uncertainty ER in the range is assumed to be stochastically independent of the
bearing uncertainty B It is furthermore assumed that each of the uncertainties

is correlated in time; 1. e., there are constants PR, PB such that

I ti-ti'

P (E P tj-ti
P(EB ' EB)}= PB

The equation (III-1) quantities corresponding to this case are:

R sin B +u 1

n Rcos Bn+vLn n n
0 0 t-t 01

n [ 1 0 t-tJ

The error term en is a zero-mean bivariate normal random variable with covariance

22
Rn B

2 n)T[
n=A(B 2 A(B).

L 'R n-

E-5



The line of range uncertainty coincides with the line of sight, whereas the bearing
uncertainty, scaled by the range, translates to an uncertainty across the line of sight.
It follows from the discussion given in Appendix D thtit the correlation between Ei and
ej for tj < tj is given by [ t ti

Pi.j = A(Bi)T tj-t i  A(BJ)

L0 PR

Clearly, this satisfies the conditions (111-8).

Note that the bearing/range observation essentially has been assigned a "SPA"
as in Figure B-2. Thus, the equations (F-i) and (E-2) may be used to construct the
equation (111-15) quantities for a bearing/range observation, if one has made the
substitutions:

T1 = RnaB  (E-3a)1,n n B
n

n = a R(E- 3b)2, n n

(where oBn and URn are the standard deviations in EBn and ERn, respectively),

Xn = Un Rn sin Bn, (E-3c)

Yn = v n -BH cos B , (E-3d)

Pl = PB' (E-3e)

P = P (E- 3f)

Analogous storage requirements between observations apply. The equations (E-1) and
(E-2) after the substitutions (E-3) have been made appear as equations (E-8).

E-6
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FIGURE E-2

BEARING/RANGE OLSERVATION.

Note: orB and a are the standard deviations in the errors EB and c. respectively.
n n n n

Bn

y
n n

B

x nx

V E-7



Bearing Observations (Passive Directional Sonar)

Suppose a sequence of bearings Bn is taken from a fixed position (u, v). Assume
the errors EB in the bearings are correlated in time: that Is, there is some constant
P, 0 < p <1 JIsch that

P (EBEB. I ti-til
I j

Let (Xn, Yn) denote the position of the target at time tn. Then following reference
[g], write

sin B cos B
n nEB - (Yn-v)- R (Xn-U), (E-4)

n

where R is a nominal range from the sensor to the target, applicable during the time
interval involved. The choice of R and its effect on a Kalman filter solution are
discussed in reference [g]. For the present, it will suffice to remark that this effect
is not significant. Rewriting (E- 4 ) as

ucosB vsinB =Xn cosB y sinB R B
n

and noting that

Xn x + (tn-to)Sx

Yn YO + (tn-to)sy

the equation (II1- 1) quantities for the bearing observation at time tn are seen to be

z = ucosB - vsin B
n n n

In = [cos B, -sin B, (tn-to) cos B, (tn-to) sin Bn],

E=REB.
n "

n

E- 8



1
Thus, cT = R where aB is the standard deviation in the bearing error EB
Clearly, p n , n+ B1 =t P satlsfles the conditions (111-8).

Now, straightforward computations using equations (111-14) and (111-15) yield the
equation (11I-16) quantities needed to construct the information update quantities
(I1-16). They are:

1
2(tn+I-tn))- 2 -L = (1-p ), n+ 1Fn (n-l [F G (E- 5a)

n, ns- n, n+1 n,n+1"

1

Z = ~(tp(+i-t) 2 1'F [],(-b
Znl= (1-p2(n - n )  R - Fnnl[ (E -5b)

n, n+ n, n+ 1

where F n, n+l is the 2-vector

[-I (tn+l-tn) -1 -1

F cos B n+1- (B cos B a 1 sin B
n,n+1 Bn+1 n+ n Bn+1 n-

(E -6a)

+ p (tn1 aB sin B n
n

and G is the 2-vector
n,n+1

G a cosB a cos B ,-t a-1 sin Bnn-i 1 B n1- B n -- Bn+- tn +1 n h n +1 n--1 n-i-i
(E - 6b)

(tn+ i- tn) -1in+ trp aB sinB] .
n

It is not clear from the foregoing development that the bearing observation is a
special case of a "SPA." However, a bearing measurement may be viewed as a
bearing/range measurement in which the range uncertainty is infinitely large. Then
equations (E-1), (E-2), and (E-3) may be used to construct the equation (11-15)
quantities for a bearing observation if one makes the substitutions Rn = R. un = u, vn =v,
0B =p, U = 0. (Obviously, PR is irrelevant. ) The resulting equation (111-15)
quantities Ae those of equations (E-5) premultiplied by

I
cos Bn+ 1

[ n+ 1- E)
sin 

(E-7)

-n+1

E-9



Note that, although the equation (III- 15) quantities under the two approaches differ by
the matrix (E-7), the information update quantities, computed in accordance with
equations (111-16), will be the same under each approach. This development is
outlined in the next section.

Bearing Observations as "SPAs"

The purpose of this section is to outline the derivation of the information update
quantities for a bearing observation in the event that the latter is viewed as a bearing/
range observation with infinite range uncertainty, and to reconcile the derivation with
the earlier development which culminated in equations (E-5). It is the development
outlined below which is reflected in Table E- 1.

It will be helpful to first present, for a frame of reference, the equation (111-15)
quantities for a bearing/range observation. These are obtained by making the
substitutions (E-3) in equations (E-1) and (E-2):

(-PB ) (R Bn+ 0

Un,n+l 1 , (F_ 8a)

2(t1 tn) -  "  (tn ,t ) - 1

_0 (-PR PR eR n

1

( 2(tn+,-n 2 (tn+i1- n) )

B n (E-8b)

V
n, n+1 

1

0 kIPR / R  ORn

n

E- 10



Tr(E-8c)

(E-8d)

Zn 2ii A(B )T Y 1 AB ) Un+ sin+ B l n+i1 B sin Bin
n, n+ 1  An+ 1  Un, n+ 1 n+ 1)Lv+ Rn cos B Vn, n- 1 n)vn+R cos Bnj•

where, of course

[cos B -sin B n

n n

[( ) sin B n cos B n

Now, a bearing observation realizes the following substitutions: Rn = R,
= u, vn = V, PB = P, = 0; PR is irrelevant. With these substitutions, it isUnn

straightforward to show that

A(Bn+ 1)TUn, n+ 1A (Bn+ ) =

[oo 11
2(tn 1-t) tcos B n+ II-P(Rr 1 -sn B [cos Bn+1 -sin Bn

b! I

and

#T

A(B T V

L-sin B nJL

Using these expressions, it Is then also straightforward to show that

E- 11



1 [cosB l
2 (tn+i - tn) - 1 -n

n n1 1 sin BnlFnn+ l Gn,]n+' E-9a

1  [coB l F Uv (E-9b)Z n, n+ 1i =  -p 2ltIn+ 1- tn) -2R- I sin B n+ 1 ] F n, n+I  •~ (-b

where F n n+l Iand Gn n+ 1 are as defined by equations (E-6) above. Evidently, these
expressions are those of equations (E-5) premultiplied by

cos Bn+ 1

-sin B[ n+1

However, since

cosBn+I

Cos Bn+ 1 , -sin B n+ - sin Bn+ 1

either the expressions (E-5) or the expressions (E-9) may be inserted into equations
(I-16); the same information update quantities will result.

Inversion of the Information Matrix

As mentioned in Chapter HI, the information matrices encountered in SCREEN are

4 x 4 matrices which partition into two-dimensional submatrices corresponding to the
position and speed components of the state vector. Thus, we can write:

BT-- T C

where A corresponds to location information, C corresponds to velocity information, and

B corresponds to the correlation between position and velocity.

E- 12



When the information matrix is singular, it may still be possible to solve for
target position. This will occur, for example, if there is a bearing crossfix or an
active sonar contact at a single time. In such a case the target's position is known,
but its velocity components are impossible to determine without further measurements.
It is desirable to perform a partial inversion of J in those cases in order to
obtain a position covariance. Similar remarks apply to the "expected" information
matrix.

Partition the inverse of 9 as follows:

ET F

Inversion of a partitioned matrix is discussed by Proposition G-1. Table E-1 gives
a FORTRAN function which implements the inversion. The quantity SINVER
corresponds to L 2, where L is the quantity of equation (Iln -20). The function has three
possible conditions for termination:

A
(1) Normal Return. In this case, the matrix J is nonsingular. The inverse

of the matrix is returned and the function SINVER is set to the trace of
the position covariance matrix corres onding to the "best SPA time,"
which is the time at which Trace Var [xt] is minimized (see reference [g]).YtJ

(2) Partial Inversion: Only Position Covariance Matrix is Nonsingular. In
this case, the submatrix A- 1 (the position covariance matrix) is returned
and the function SINVER is set to the negative of the trace of A- 1 .

(3) No Inverse Performed. The position covariance matrix is singular. In this
case, the value SINVER = 0 is returned.

The test for singularity consists in checking the magnitude of the determinant of the
appropriate matrix. The singularity test fails (i. e., the matrix is considered
noninvertible) if the determinant cannot be determined to at least two significant digits.
In case single precision variables are carried to about 7 digits (2-23 - 10-7), the
determinant involves the product of two such variables, hence its accuracy is about
2- 22 or 2 x 10- 7. Requiring two digits of accaracy in the difference translates to less
than 2-1 8 or 2 x 10- 6

I
E- 13



TABLE E-1

(COVPTES THrE INVP.RSE OF A 4X4 MATRiIX PAIIoNEr) INTO 2X2 'SURMATRICESs

I NVFRl'i OF (A 8) = (T) E) flE A =(A( I ) A (2
(3 (,) = 0(i, F) (A(2) N(3) ) FTC.

TU(F .bBMAT41C3S ARF -'YA04FTIC.

CTPANi(B) C] rO n I 1

C INV(A)*
T =C - TRANJ(i)*INV(A)*H

f- i AAT*?IX IS SI NGULAR. * INVI 1=() I- ; ErTu011D.
It: V1.L CO'I IS SINGULA' , MINJUS T:liA(P P I' qFPhWNE

TRAC'r 211'
('C')1= 2. At*( 13) /* 4EAL*4 ROUJID0FF A13T. 2**-23*VALJE

!)ETIl=A(I)*AC3)-A(2)*A(2)
IF(WTI.IY CO~*I/A( A)RETURNm /* POITI)HN SJRMAIT IX IS i INGlJl-AR-- RETURN

UFETI l/l+Tl ZERO
iI )=A( 3)*.)FT1 /* P( ) IS INVf:R3!- OF k\( ATi [His POINT

3 ?V~l~-!( )-(3 ) ftMIU NJTifACf: OF POST fI ON UJB'A ATP IX
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TABLEE-LCntiued

A. 'i'If ) NO)T I Ai'IY " S YlM'AETq~IC

,.;?=r)( 1 )*11( 2)+r)( ?)*i1( A

F ( )~( ) -H( I )*SIl -13(2 )*5.3

:(3)=('( 3)-HI( 2) *S2-13(3 )*S4

; CHFC" If: MA ;.OF F() APPROXI;AATFS !qOUIDOFF FRROR? IN C() (RE-AL*4)

lsI~:F.3.CON*I:Z(C RETURN /* R~ETUrV4 NEG0ATIVE POS'N 3URMATI-IX TRACF

'E<FC)ti SM.~ALL !WFTERMI.1AtJT

I PC YiT2 *LE .(C20N*S IZEF) RETURN1 /* RETURNS NEFGATI VE PoS.N SUIIMATR IX TRACEI

TEF-:A P = F1)
F ( 1 )=f:( o *:jFr2
F (2) =-V:(2 ) *FT2
r( 3) TE A*U FT ?

A C',MET?( DO NO)T I MILYTH AT Pi IS SYAqAET'?IIC

(4)-S)F(2)-S4*1F(2)

0)( 1 )=r)( 1 ) -E( I ) *SI-E (2 ) *S2
)(2)=D(2)-F(l )*S3-E(2)*S4

11(3)=I)( I)-E(3)*S3-E(4)*S4

SIVER IS THE TRACE OF TIlE POSITION COV MX AT THE B-EST SPA TIME

2 00 RFTjkfI
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APPENDIX F

SCREEN LOCALIZATION ROUTINES

by David P1. Kierstead

This appendix summarizes the localization algorithms as they appear in SCREEN.
These computations are performed by the same subroutines that compute cdps and
snapshot PDs, with user inputs controlling whether the results are given as output.

As the development of Appendix E shows, all types of observations considered
in SCREEN may be cast in the form of SPAs. This simply requires that appropriate
quantities be constructed to take the place of -ln, ail, 1 , P2 , and zn in equations
(E-1, 2). In all cases, Bn is the bearing (of the 'major'axis in the case of a SPA, of
the observation in the other two cases). Table F-1 gives the necessary substitutions.

Cumulative Localization

Subroutine PIMAP guides the whole computation. First, PIMAP breaks the
program time steps into small subintervals (see Appendix K), then SCRINF is called
at each subinterval.

When the function SCRINF is called in PIMAP, all of the sensors are dealt with

in turn and the following operations are performed for each:

(1) the quantities in Table F-I are computed,

(2) a quantity SAVAIL is computed (this is the probability that the given

sensor detects the target, given the target's position), and

F-
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TABLE F-1

VARIABLES DETERMINED BY OBSERVATIONS

FORTRAN Variable SPA Bearing/Range Bearing

-1 -1 -1)R (Rna
1/SIGMA 1, n n Bn n

-i -10

1/SIGMA2 2,an

RHO(n+ 1-tn) (tn+i1- tn) (n+ 1-tn)RHO1 l B DB1

RHO2 (p2 -) P (not required)

Z1, Z2* Zn rn +R sinB nun+R nsinBn

Ivn+Rn cos Bn v+R cos Bn

* These quantities are only used in computing a'and I. SCREEN does not

currently compute either, and thus does not deal with Z1, Z2.

F-2 i
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(3) subroutine INFADD is called to:

(a) compute the information from the sensor (given a detection) via
equations (E-l, 2)*,

(b) multiply the result of (a) by SAVAIL to yield "expected information"
from the sensor, and

(c) add the result of (b) to the accumulating "expected information" matrix.

When the information matrix has been adjusted for the entire time span of the

problem, PIMAPS calls SINVER to compute the localization measure. (See Appendix E.)
Finally, this quantity is multiplied by the cdp for the entire screen to yield expected
localization, given detection. (Equivalently, the "expected information" matrix is
divided by cdp and then inverted to compute the localization measure.)

Snapshot Localization

Subroutine PDSTEP guides the computation of snapshot localization. At the desired
time step, PDSTEP calls the function PRSTEP which performs essentially the operations
of SCRINF, INFADD, and SINVER. That is,PRSTEP evaluates the snapshot analogues

of equations (E-1, 2) for each sensor and accumulates the results into an "expected
localization" matrix. The localization measure is computed and is then multiplied by
the screen's snapshot PD.

The differences between equations (E- 1, 2) and their snapshot analogues stem
from the fact that there are no previous time steps to be considered. Thus, PI = P2 = 0,

so V is the zero matrix. Further, there can be no velocity information from snapshot
Z, observations, so only the upper left 2 x 2 block of need be computed. The

associated localization measure is the trace of the inverse of this block (see Appendix E).

* There is a slight deviation from equations (E-l, 2). Recall that values of the

previous observation from the sensor in question were required in order to compute

the incremental information from that sensor. SCREEN assumes that the previous
observation is the same as the current one. This is reasonable because the time

increments are very small.
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APPENDIX G

MATRIX ALGEBRA

Various matrix algebra computations and conventions which are needed for the
analysis and description of the SCREEN target motion model are the subject of this
appendix.

The first part is devoted to a careful description of the notation conventions used
in describing the operations on the DIOU process. In what follows, let u = {u 1.... uk}
and v = {vl,. . . , vi} be (not necessarily distinct) sets of indices drawn from {i,... , }*
When such a set consists of a single index j, then the index j will be used instead of
{j} . If M is a matrix, then the transpose of M will be denoted MT.

Let x be a (2T )-vector written as

where each xi is a 2-vector. Then x(u) shall be the (2k)-dimensional subvector defined
by

x(u) = [1]. (G- 1)

* It is clear that the indexing may start with any number, with corresponding

changes in vector and matrix dimensions required. In the SCREEN target motion
model, e. g., the indexing begins with 0 (see equations (IV-3) and (IV-4)).

G-1
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Next, suppose A is a (2T) x (2 T) matrix partitioned as

a A1 TT.

where each ai. is a 2 x 2 matrix. Then A shall be the (2k) x (2k) matrix defined by

[au, a]u

Auu . (G- 2)

L UkUl UkukJ

and A(u) will denote the (2T) X (2k) matrix consisting of those columns of A which

contain elements of Auu:

A (- 3)

For example, if = 3, u={ 1, 3} and

a11 a12 a13

A = a21 a22 a231,

[a31 a32 a33-

then

"a11 a13-

La3 1 a 3 3 ]

A (u) 21 23

G-2



and

a 11a 1
A=

La3 1  a 3 3 J

Recall that each aij is a 2 x 2 matrix. Note that one can also view A(u) as being
obtained from A by deleting all columns not corresponding to indices in u. Then u
may be obt-cined from A(u) be deleting those rows of A(u) not corresponding to indices
in u.

Now let Iube the (2k) x (2T-) matrix which is the identity matrix when restricted
to the index set u and is the zero matrix elsewhere. Examples follow:

(a) T= 3,u ={f21};I uis the 2x 6matrix given by

(b)T =3, u=11,21};I is the 4x 6matrixgivenby
U

0 1010 0 001
- 0 1 10010 0

0 0 1 0 1 10 0

u1 u2

(C) T 4, u={1, 3};1 is the4 x 8matrix given by

0 10 010 0 10 01
I U 0 0 00 1010 0]

01 0 010 1 0 0-

U 1 U 2
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Let A be a (2T) x (2T) matrix, and suppose D is a (2k) x (2k) matrix which is

"associated" with the index set u, in the same sense as the information adjustment

quantities in the text pertain to a set of indices (i. e., sampling times). (See the
discussion of equations (IV- 10) and (IV-11). ) Then the operation ( ) is defined by

(+) D = A + ITDI, (G-4)
u u

the idea being that the entries of D are to be added to those entries of A corresponding
to the index set u. For example, if = 3, u = {1, 3}

a 11a 12a 1
A = a21 a22 a23

[.a31 a32 a33

(each aij being a 2 x 2 matrix), and

D=[: ]
where f, g, h, and k are 2 x 2 matrices, then

allif a12 a13 g]

A (+)D [a21 a22 a 23

[a1+h a3 2 a3 3+k

The operation (+) can also be extended to vectors. If x is a 2T -dimensional vector,
and d is a (2k)-dimensional vector which is associated with the index set u, then by
definition

x +)d =x + lTd. (G-5)
U

For example, if T =4, u ={ 1, 3, 4} ,

G.-
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x 3 d d

4-

then} ={} te

x +;~

(recally ha eA ais a 2 x 2r matrix whasu=fl..uIad V..,1

A, the [aA as 3 ].

Geotneeally orthsmticnc ountred indi thisn fro r, (v - T fu vte
Auk is 21st Am a s defined byeqain(2)

*1 1 1u5 v
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The remainder of this appendix contains various propositions in matrix algebra
which are used in the analysis underlying the target motion model. Throughout the
sequel, I will denote the identity matrix, and twill denote the matrix [I, 01. The
dimensions will be determined by the context.

Lemma G-1. If x, y EIn and C is an n x n symmetric invertible matrix, then

x TCx- (y Tx+x Ty) = (x-C Iy)T C(x-C 1y)- yT C -

Proof. Expand and simplify the right-hand side of the formula. QED.

Lemma G-2. [0 T and[A T] are invertible if and only if A and T are, and
in this case

[r :]' = [: -A1BT-1] and [ :1 = [0'EA- 1 :- 1]

Proof. Note that the determinant of T]is (det A) (det T). The inversion
formulas are easily verified. QED. LO

Proposition G- 1. Let

M=[T]

be an invertible symmetric matrix where A and C are symmetric (and invertible)
matrices not necessarily of the same dimensions. If

S = A-1B

T = C-BTS = C-BTA-1B

then

det M = (det A) (det T)

G-6



and

= [] T+1(ST I].

Proof. It is clear that

[_ I  
]M 

IsT 1 - .

so the determinant assertion obtains immediately. It also follows that T is invertible.
Next, from Lemma G-2,

- 1 l -lST 1 ST
M-= -  T I T [ I  J0= [ +ST-I -ST-I 1

from which follows the last statement of the proposition. QED.

Proposition G-2. Let E and D be symmetric matrices such that:

*i (i) E is invertible.

(ii) The dimensions of M are at least those of D.

-lAT A
(IiI) (E +1 DI) is invertible.

Let E1 = t T d[Ii21 T. Then:

(a) (I + E1 1 D) is invertible;

(b) (Z-1+ tT D -1: - T GtE, where

G D(I + ElD)

A. G-7



(c) det(Z-I DA)- = det(I + E D) - 1 detE;

(d) D is invertible if and only if G is, and in this case

G = (D-I+ E11) -1

(e) if z is invertible, then so is E- + D = F-1, and then

ii 111-)1.

G

Proof. We have

-1 AT A-1 FD 0-
(EC +I DI) = (I+z )-1

[+Z11D 01

L; 21 D  I

Lemma G-2 now yields statements (a) and (c), and also

-1 T -1 L_ (I+ 1 D) - 0

since

I= (I+ M1 1 D) 1 D(I + Z 1 1D) ,

"I 1D(IZ1D)-I 
0] E_M21 D(I+x 11 D)-I 1

E 2_ EZ11G 0]

I x
L-21 J

G-s 8



h
which gives statement (b). Statement (d) is obvious. Finally, if Ell is invertible,
then

-1

(I+2 1 1D) = I 1 1(2 1 1 + D),

which, by statement (a), may be written as Z 1 14-; furthermore,

G = D(I+ 1 1D)-'

-I -i -I1-1 -
1 --1) (Z-1+D) 1

-1 -1 -1
=QI'-~ -ii) I]I 11

-1 -1

=- (MI_))-E QED.

Corollary. Let M and D be symmetric matrices whose dimensions are k x k and
j x J, respectively, with j < k. Let Z be invertible and let A be a j x k matrix of rank j.
If Z- 1 + ATDA Is invertible, then

4iT -1 TT-
(f +A DA) = -ZA D(I+A.ATD)- AE,

det(- 1+A TDA)-1 det(I+AEATD) - i detX.

A
Proof. Since A has maximal rank, A = IP for some invertible k x k matrix P.

Thus,

T-1AT -1- TAT A )-I
+ATDA) = (lPTI DIP)D

-1[ T)-i AT A-i1 T-i1=P [(I) + DI1 (P

G-9



so Proposition G-2 implies that

P(E- +A TDA)- pT = pZp_ pTTDg+pT TD)- ltpPT

and

-1 T 1pT A TAT T
det(PCE +A DA] P det(I+IP2P I D) det(IpT),

from which the statements of the corollary follow easily. QED.

A particular example of the corollary is a proposition due to S. S. Brown and

R. V. Kohn (reference [o]). Suppose D = s- 1 and

T E 21 M22 E23I

L31 M 32 1 33J

where Z 2 2 is a symmetric matrix which has the same dimensions as s. Then the
corollary, with A = [0 I 01, implies that

21 | 22 |1 T 2 1 A 2X2
1 2  1

M- M 2 2  (s+ 2 2) P2 M22 E 231.

L32J

The following proposition is sort of a converse to Proposition G-2, and is due to

Dr. L. K. Arnold.

G-10 .;I
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Proposition G-3, Let

El 121

LE21 E22

with 2. ,invertible, and let H = z -ztTG ̂E. We then have the following:

(a) If, for some Invertible matrix o, D i - - E_ and
11an

G = E C-I -1
II (2111-' l '

-1 l1AT A
then H is invertible and H-1 Z -1 D.

(b) The matrix D is invertible if and only if G is, and in this case, G = (D

Proof. (a) If Ell and o are both invertible, then so is El 1 1 - I + Z11D. Since

-1 AITA 1 1M +1 DI=E1[I E 21

Lemma G-2 shows that the inverse of Z -ITDt exists; Proposition G-2 says it is

equal to H.

(b) This follows from part (d) of Proposition G-2. QED.

The corollary to Proposition G-2 extended statements (b) and (c) of that proposition.
Statements (d) and (e) may also be extended, with Ell replaced by AZAT. Using these
extensions, analogous versions of Proposition G-3 may be proved as well. For
example, if Z is partitioned as in the Brown-Kohn proposition discussed above, E 2 2 is
invertible, and

H M1 C - -1I M

H - Z 2 2 E 2 2 ( 2 2 ) 2 2 2 1Z 2 2 23]

G-11



for some invertible t, then, if D t1 -E 22, H is invertible and

= + 0D 0 .

0 0]

In the text and subsequent appendices, such extensions of Propositions G-2 and G-3
will generally be invoked without explicitly stating the particular form being used. In
those cases, A will usually be an appropriate permutation matrix.

G- 12



APPENDIX H

GAUSSIAN ANALYSIS

This appendix collects some useful facts and manipulations concerning
multivariate Gaussian densities which underlie the analysis of the target diffusion
model. Two sources for basic facts about multivariate Gaussian distributions are
references [n], [p], and (r].

N
For x. m c JR and C an n x n symmetric positive definite matrix, define

1 1

nlx;m,C) = (2Tr)2 2e - (x-m)Tc-l(x-m) (H-i)

= exp I m)T 1(xm)+K] , =log Ic! + Nlog2r,

where I C I = det C is the determinant of C. Thus, n(. ;m, C) is the multivariate
Gaussian density function on EN with mean m and covariance matrix C. That (H-)
describes a probability density function follows from

N 1

fexp-1I(x-m)T C (x-m)}dx (27r) C2 e K(H-2)fRN 2 "-'' I eHI

When it is desired to emphasize the dimension of the distribution, the function in (H-i)
will be denoted by n(x : JN;m, C).

Proposition H-1. Suppose a random variable X has the density function

kn(x:k ;m, C).

H-1



If P is a j x k matrix of rank J, for J < k, then Y = FX has the density function

n(y :1J; Pm, PCPT).

The proof of Proposition H-1 is essentially a change of variables in equaion (H-1).
The typical use of Proposition H-1 is illustrated by Proposition H-3 below, and
discussed further in the remark following the proof of that proposition.

Proposition H-2. Let a Gaussian random vector Y be partitioned as

Y = [2
and let its mean vector I and covariance matrix V be partitioncd as

JA 1 11i 12
JA andV =$

An2 d V [v21 v22

with respect to this partition. Then

-lY=z) 1 T -1
P 1 Y= = n(Y p 1 +v 1 2 v2 2 (z-p2), v1 14-v12v2 2v21).

Proof. See reference [r], pg. 63.

Proposition H-3. Let a Gaussian random vector Y be partitioned as

H
Y = Y2

Y3

~H- 2



with corresponding partitions for its mean p and covariance matrix V given by

JA I v11 v 12  v131
A [A2} v 21 v22 V 23

A 3- LV31 v32 v33J

Then

P [ Y2= = n ;m(z),Q ,

where

(Z) L] V 12 v
2

Vl v13 v 12 -1

3= + ]22 [v21 v23).
[L31 v331 IV3I

Proof. Let X be defined by X1 = Y X Y X Y thus, X=PY where P is

the permutation matrix

10 0

0 01

Then X has mean

H-3
I

I
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and covariance matrix

Vii v 13 v 121

p~T v v Iv
v 33 v32/

V 1 2 3  v22_

by Proposition H-1. Now,

[x] 1 2 =z=[Yx],X z

therefore, applying Proposition H-2 to the random vector

X
21

x= " 2

yields the present result. QED.

Remark. Note that other results along the lines of Proposition H-3--e. g., the
distribution of Y2 given Y 1-- may be derived from Proposition H-2 using Proposition H-1.
(Note further that P need not necessarily be a permutation matrix. ) These "change of
variables" adjustments will be true of other results as well; for example, applying
such an adjustment to Proposition H-5 below yields the equations (I- 1). However,
since the spirit of these adjustments has been made incarnate in the proof of Proposition
H-3 and by the Brown-Kohn example in Appendix G, they will generally not be made as
explicit as they were in those instances.

j ~k
Proposition H-4. Let X E JR and Y E JR be (vector-valued) random variables

jointly distributed such that the conditional density of X given Y has the form

p(X= x Y =y) = n(x; aAy, 1 1).

H-4 tl



where a E 1R A is a J x k matrix, and Z 1 is independent of y; and such that the

marginal density for Y is

p(Y=y) = n(y;p ,

Then:

(i) the distribution of (X, Y) has the density function

z+A pAZ2 T A E 2 A
1 22

n §] _1i AK T E32]

and

(it) the conditional distribution of Y given X is Gaussian, with moments given by

E(Y X) = [21T-+ATT1 A]-1 -1 I+AT1-1(X-a)],

2 -1 -11

Var(Y X) = P2'+A T,1A]-1
2 1

Proof. If f(x, y) denotes the joint density for X and Y, then

f(x,y) = p(X=xI Y=y) p(Y=y), (H-3)

so f(x, y) has the form

+k1 1

f(x,y) = (2 .) ( 2 [-Z2- 2exp(- x,y)),

where

Q(x,y) = (x-a-Ay) T Z I(x-a-Ay) + (yp)T T2I(y-P).

HI-5
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This can be written as

Q(x-) ? x x- (_T ~ T Lc)4 a +Z' pTT p. (H-4)

where

F TZ - T-1 TA -
1

(H- 6)

Note that E~ is positive definite, since both f 1 and F,2 are. Applying Lemma G- I to
the first two terms on the right-hand side of (H-4) gives

-1 T ;(_-lt) -1 -TZ - TZ-1W

Now, f(x, y) has the form

f(X, Y) K ex x- (X-z~) (H- 7)

where K is a positive constant. Since f(x,y) integrates to one over E ,- (H-2) implies
that K2.. [(21r)~k 11 - 1 )1 .

Now, from (H-6), it is apparent that

[I0 ] K %.A]

H- 6



so

0 1- 1 7 A]~[ T '3
2

by Lemma G-2. Now it follows that 1 - 1, the covariance matrix of (X,Y),is given by

ZEI+A2A A27

-T 2=(H-8)_2 A T  E 2

From this and (H-5) the mean of (X,Y), which equals Z- 1  according to (H-7), may
be explicity computed to be

This proves (i).

To prove (ii), note that by Proposition H-2,

Var(Y X) = Var(Y) - Cov(Y, X) (Var X) - 1 Cov(X, Y)
-1 (H-9)

E(Y X) = E(Y) + Cov(Y,X) (Var X) (X-E(X)).

Substituting from the matrix of (H-8) and noting that E(X) = a+Ap changes (H-9) into

1H-7

.t~



Var(Y IX) = 2 2-M 2A T I(A 2A T +T 1) 1AX 2' (H- 10)

E(YIX) = I + 2A T(AT 2 AT +z 1 ) (X-a-Ap). (H-11)

The results ib) and (d) of Proposition G-2 suggest multiplying the right-hand side of
(H-10) by Z I+AT A. Doing this and simplify~ag give the identity matrix; therefore,

Var(YIX) = [E2 -ATZ_1A]- 1 . (H-12)

Furthermore,

E- IX) 1 -1 T -
2 1A 2 1- z~(-),(-3

because if the equality between (H-12) and (H-10) is used on the right-hand side of
(H-13) and if the resulting product is expanded and simplified, then (H- I1) obtains.
The formulas (H-12) and (H-13) prove (ii). QED.

Proposition (H-4) essentially describes Bayesian updating with Gaussian random
variables. The final topic of this appendix is the constraining of a marginal distribution.

To begin, consider a random vector Y--not necessarily Gaussian- -which is
partitioned as:

Y 1

Y= Y 2y

3-

In the following manner, Y may be constrained so that Y 2 has a particular density f.
Given t with the same dimension as Y2 , the conditional distribution of (Y1 , Y3 ) given
that Y2 = t has some distribution function I ([--];t). Let

G z] ; t)f(t)dt, (H- 14)
\z

where the integral is the appropriate multi-fold integration. A random variable with
distribution function G is said to be obtained from Y by constraining Y2 to have density f.

H-8



In case the conditional distribution function F has a density p(. ;t), then (H-14)
implies that G has a density function g defined by

g(x,y, z) = p(x, z;t) f(t). (H-15)

Note that (H-14) and (H-15) obtain if f is the marginal density function of Y2 determined
by the distribution of Y.

It is worth noting that the foregoing construction and that of Proposition H-4 are
pretty much the same: both a conditional and a marginal distribution are specified,
and the joint distribution derived. (Compare equations (H-3) and (H-15).) This

similarity is illustrated in the proof of the following proposition.

Proposition H-5. Suppose Y = is a Gaussian random vector with mean

=312 and covariance matrix

[B 1 B12 B131

B = B21 B 22 B23 .
B 32 B 33

Let Y* be the random variable obtained from Y by constraining Y 2 to have a Gaussian
distribution with mean a and covariance matrix C. Then Y* has a Gaussian
distribution with mean

+ [B22 B22 (c- 2)
LB32 -

and covariance matrix

i~ 12L,,
B - B B B (B B B]

I

H-9
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Proof. From Proposition H- 3, the conditional distribution of [ri given that

Y2 z has density Ly 3

n ;(X a+Az, Q) (H1-16)

where

[B1 2 1  -1

A =I 32J B22,

Q= B:: :13 A[B21 B 231.

*Proposition (H-4) and equation (H1-15) imply that [2l has a Gaussian distribution
with mean [Y31

a -Aal

and covariance matrix

CA T AC] 
H 8
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Now,

++Aa -- r83 [B] A  121

r. [B32 B22(a-/2),

so the mean vector (H-17) can be rewritten as

03 -I B32 B 2 2 (-92). (H-19)

-,2. B22

(Note, in particular, that the third component is equal to a.) Next,

AC = [ ]22 B C, (H-20)
LB 32 22

CAT C B 2 2[B 2 1 B 2 3 ]; (-21)

I: °°and

AAT E12 -1 CB- [B B
ACA =B 3 2 J 22 22 21 23;

LB 3 1 B3 3J - LB3 2 J 22B21 23] + LB 3 2 3 B22CB22L 2 1 B 231

[ 11 B 131 F121 (-1-C B-1 U
B 31 B 33 ] - [B32 J 2 2  2 2 B2 1  23

i[B 11, B13, 1  2 P,, -1 -1.

LB 3 1 B 3 3 J LB 3 2 J B 2 2 (B 2 2 -C) B 2 2 B 2 1 B 2 3 ].

H-11
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If

A -
B B 1 2B 2 2 (B2 2 -C)B2B2 1  (H-22)

then the last equation says that

T 11 fA13Q +ACA T = A A I
L B31 

B33J

moreover, (H-20) and (H-21) become

AA

AC 3~2J 'CAT [B 21 B 23]

and C = B22 Now the covariance matrix (H-) for 3 becomes

222

A A A
B B B
B11 B13 B12

A A A
B B B31 33 32

A A A
B B B21 23 22

with defined by (H-22). To finish the proof, apply the permutation matrix
i

1= 0 0
[I 0P = [o0ij

according to Proposition (H-1) to the mean vector (H-19) and covariance matrix (H-23).
QED.

H- 12 [
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APPENDIX I

OPERATIONS ON THE DIOU

This appendix discusses in further detail the formulas which accomplish the
marginal constraint and contact data incorporation operations. The time step increase
operation is addressed in Appendix J. The application of a marginal constraint will
be presented first, followed by the incorporation of contact data. From this discussion
derives the methodology of equations (IV-10)-(IV-12) in the text. The appendix closes
by discussing the removal of a constraint and the application (or removal) of a constraint
in the presence of other constraints.

Marginal constraint. Let u = {ul,... uk be a set of indices and let z(u) be the
subvector

zu
z

of the random vector ZT . It is desired to constrain, in the sense of Appendix H, the
UPD for Z. in such a way that the marginal distribution for z(u) has specified mean
0. and specified covariance matrix 4 u. Let the covariance domain representation
of the UPD be (BT., . ,K$) and that of the CPD be (CT 1. ,T K r ). Then Proposition
(H-5) implies that

^/T=0T+BT ()B 1(0 u-OT M)) (I- la)
=B -B(u)(Buu)-1 (B )(Bu)Bu)-  T,

where PT (u) is the subvector of 3T corresponding to u,

.M



Bu =(B )u Ebu Jl iJ1 .k

and BT. (u) is the column matrix of BT containing Buu. (See equations (G- 1) through
(G- 3) in Appendix G.)

0
Now let (d.T ,4;T) and Q54., 64T be the information domain representations of

the UPD and CDP, respectively. if D =-(Buu)1, then Proposition (G-3) says
that

* i. e.,

where the (.)operation is defined by equation (G-4). Furthermore, by Proposition
* (G- 2(c)).

det CT = det(-sB (6 1-B- 1-B- 1 det BTuu u u uu T.

= det(B U)- det -t det BT

whence

KT. o 4'- log det 0 - log det B .(1-3)

Now,

- 1 B- 1 ( ( -i 1 -B 1 )]t B ) -1OT( ]T. T T u uu T T uu (UT

-1-1- -i-
=BT O [B fi- B1 (0 - O3T(U)) + (4u B U)OT3(U~) + (# u u-B U)

1-2 I



which, upon simplification, yields

Other operations involving marginal constraints will be discussed later in this
appendix.

Contact Data; Basic Methodology

For the remainder of this appendix, C T , 7T etc. will denote parameters for
the modified distribution before an operation is performed, and CT, T, etc. will
denote the corresponding parameters after performing the operation.

It is argued in the text of Chapter IV that the incorporation of a contact datum
results in equations of the following form for the informaton matrices and information
vectors:

T 9(.)D (I-5

T' (d (1-6)

where D and d take forms depending on the type of contact datum involved. D is,
moreover, a symmetric matrix. By examining equations (1-5) and (1-6), it is apparent
that, in order to remove from processing a contact datum already incorporated, the
negatives of the corresponding D and d should be used. The (+) sign has the same
meaning as described by equation (1-4) and (1-5), with u = {j} where tj is the time
of the contact.

Now, Proposition G-2b implies that

CT = CT Cr (t) D([CttD) - 1 CT (t)T (1-7)

and

det CT = det(I+CttD) - det C.

1-3

IL.



Since det CT and det C T are positive, so is det(I+CttD), and hence

log det C = log det(I CtD) + log det CT'T tt

from which

[T = KT - log det(I+CttD) ([-8)

follows.

Next, using (1-6) and (1-7),

VT r T (t)d - CT (t) D( CttD)- C (t) CTYT=  T T T tt T 7r

-1
-C (t) D(I+CttD) Cttd

= V T 4 CT (t) [l-D(I+CttD)- C tt]d - CT (t) D(I+CttD) - yT (t). (-9)

Since C is invertible,
tt

I - D(I+CttD) - C I D(Ctt D)
it t-

= J~K+D ) -

= (+4DCtt)

Substituting this into (1-9) gives

VT = + CT (t) (I+DCtt)- d - CT (t) D(+CttD)- V (t)- (-10)

-1
The following is also worth noting for Independent interest. If D = , and

d = A-16, for a positive definite symmetric matrix A, then

1-4



-1 -1
(I+C ttD)- = A(A+Ctt)

and

-1 -1
(I*DCtt) = (A+Ctt) 1,

so equations (1-7), (1-8), and (1-10) become

CT = CT - CT (t) (A+Ctt) CT (t), (I-1a)

KT = K T - log det(6+ Ctt) + log det A, (I- 11b)

-1
' = 'Y T + CT (t) (A+Ctt) (6 -YT (t)). (1-11c)

Of the operations under consideration, the only one which, in general, fits the criteria
necessary for (1-11) is the incorporation of a "SPA. " Hence, the equations (1-5)
through (1-8) and (I-10) are recommended for use.

Now, the equations (1-5), (1-6), (1-7), ([-8), and (1-10) form the basic methodology
described by equations (IV- 10), (IV- 11), and (IV- 12) in the text. The remainder of
this appendix will be used to show how the various constraint operations fit into this
methodological framework.

Constraint Operations and the Basic Methodology

Let Ou and 4Oube the mean and covariance matrix corresponding to a marginal
constraint as discussed above, and suppose (Di, di) (i=1 .... n) are information
adjustment quantities corresponding to various contact data as per equations (1-5) and
(1-6). Suppose all of these are to be incorporatcd into the UPD. Then (1-2), (1-4),
(1-5), and (1-6) combine to give the following equations for the resulting information
matrix and information vector:

A V,0(+) (- I -) D (+) D (1-12
7 u uu n

S( + )(4 u-Bu (u)) (+) d (+) d (1-13)
T " O 1 n'

1-5
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In (1-12) each quantity to the right of a ()ign is to be incorporated into a (2T) x (2T)

matrix (either ,q; or an already modified yr), according to the definition of (p). A
similar remark applies to equation (1-13). However, it is evident that this "addition"

is commutative among the quantities to the right of the first (+) sign. Therefore,
if the constraint is to be applied after all of the contact data are incorporated, then
the following equations obtain:

(--1 -1

T +) u -Buu) (-14)

-- 1 -
- T ) u Buu Tr (u)) (1-15)

Equations (1-14) and (1-15) give rise to the assignments described by equations (1-14)

of the text. Now the equations (0-7), (1-8), and (-10), which are equations (IV-12)

of the text, may be applied. Thus, a marginal constraint may be applied even after

the incorporation of contact data. Note that if this methodology is applied in this
case when the prior distribution is the UPD (i. e. , no contact data is present), then
the equations (1-1) and (1-3) ultimately obtain.

By subjecting equations (- 14) and (I- 15) to the same examination that was applied

to equations (1-5) and (1-6), it is apparent that a marginal constraint may be removed

by replacing the corresponding D and d by their negatives and applying the same
methodology. Hence, the assignments given by equations (IV- 15) of the text are
justified.

As mentioned in the text, the foregoing remarks apply only when no other constraints

are involved. Suppose now that u = {u 1 _ .. ukl and v = {v I ,... v1} are (disjoint)
index sets, and for notational simplicity suppose that ui < vj for all i and j. Let

u' = {ul,... , uk, v 1 ,.. . , v1} . Assume further that the constrained distributions for
z(u) and z(v) are uncorrelated, with parameters (Ou, Du) and (pv, 4 v), respectively.

(This will be the case in practice.) Thus z(u') will have the distribution with parameters

V V

The idea is to be able to apply the constraint on z(v) after the constraint on z(u) and

several contact data have been incorporated.

1-6



Now,

@v

furthermore,

=[B~ B]

where, e.g.,

B uv [cov(zf z v j) i = 1, ..... k; j 1 . ,l

Let S= B 1 B T = B -B B- 1 B According to Proposition G-1.
UU UV, v vU UU Uuv

[B E-i
-I UU ] L [ -1[ -TB Ulu , = 0 ]

With all constraints and contact data incorporated, the information matrix is given by

-1 -1
4,9 = 9' (+) (%u'Buu' (+) D1 (+) "'" (+) Dn

,D
T T flUu

) - (4- ) D1 (+ ) (+) D (+) (_1-I)[_ST ] (4)

1-7
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C

so

9 , (4- [~](_1 1 ) [_g [] (_) t-l (1-16)

If

= (_- 1) [_T I]

then the assignment given by equation (IV-16a) of the text obtains. Next,

UU (UB') = + I],

so

= eal ((U' u 'T (U')) (+)d I (.)... (+) dn
T T Ul u u)

([-17)
:: T ( v 10V1 V (+) LpT+I (U')

may be derived in a manner similar to the derivation of ([-16), justifying the assignment
given by the text's equation (IV-16b).

A straightforward examination of the derivations of equations ([-16) and ([-17)
reveals the following. Suppose the constraints corresponding to u and v have been
incorporated into the modified distribution, and it is desired to remove the constraint
corresponding to v. Then the methodology of equations ([V- 10)- (IV- 13) of the text
(equations (I-5)-(I-8) and ([-10) above)may be applied, taking for D and d the negatives
of the quantities given by the text equations.

Equations (1-16) and (1-17) may be extended to the case where ui > vj for some
i and j using a permutation argument. See the remark following Proposition (H-3).
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APPENDIX J

TIME STEP INCREASE

This appendix considers the third operation on the DIOU, that of increasing the
time interval over which the process is studied from [0, t1 .) to [0, t. +i). The other
two operations, corresponding to marginal constraints and contact data, are discussed
in Appendix I. The time step increase (or "updating") operation will first be applied
to the UPD, and then those results will in turn be applied to the modified distribution.
Initially, it will be assumed that T > 1; the cases T = 0 and T = 1 will be addressed
at the end.

Updating the UPD

According to the relations (IV-6) in the text,

HT T

B = (J- 1)

andT+ by te r r ,t

and T -TS Then, according to Proposition G-1, T is invertible,

I

LT+I

A 1



B 0
B-T + T- 1 [-S T 1], (J-2)

where I is the 2 x 2 identity, and

det B = (det B )(det T).'r+1T

Since det BT and det BT +I1are positive, so is det T, and equation (IV-27) of the text
obtains:

K0 =K 0 2 log 27r + log det T. (J-3)T+I T

The relations involving equation (J-2) simplify, given the specific form of B.
contained in the relations (IV-6). Let eT be as in those relations, from which follows

b.i,r+I = bir + e r(bi, r-bi, rl) (J-4)

forO<i<T. Now, ifr >1, use (J-1) towrite

B HT 2T - 2 H
-1

T
B H b (J-5)

T T-2 -1,T-1'
I I

HT  b
L T-1 T,7

Then (J-4) and (J-5) imply

H= KT] + e T b> K&T _ (k ,TJ T. br T,-1

J- 2



Note that vectors on the right of this equation can be identified with columns of B 7 .
Since B IBT equals the identity matrix, this in turn implies that

S = B- H = I , (J-6)
-T (1 e T )I_

in which I is the 2 x 2 identity matrix. Furthermore,

T = b -HTS = b e (J- 7)
T+1,T4-1 7 T+1,T+l_ T T1-1, l-(1T-e )- 1,.

Equations (J-6) and (J-7) are the text equations (IV-26), except that (IV-26c) is
derived in Note 3 at the end of the chapter. Note that not only computing T-1 is a

computationally simple task, since T is only a 2 x 2 matrix, but obtaining T is easier
than its original definition might suggest. Indeed, equations (J-6) and (J-7) show
that both S and T take on simple forms, dependent on process parameters at T 1, T",

and T+1. This lies at the heart of the simplifications.

Next, let L be the (2T +2) x (2 4 2) matrix defined by

L = 2] T-[-ST I, (J-8)

so that (J-2) may be written as

B-1 0

0 0o

which is text equation (IV-28a). Note that since S takes the form given by equation
(J-6), (J-8) can be rewritten

0 01
L . (J- lOa)

0

i i



where Q is the 6 x 6 matrix

Q -le I -

-eQ I, - (1+e T)II. (J- lOb)

The reader should beware that the matrix partitions in (J-9) and (J-1Oa) are not

(nor are they intended to be) compatible.

Now, the equations (IV-5) of the text immediately give

fT

fl =---------------- 
(J- 11)

L T T T

Let, e. g., O r (T-1) denote the (T"- 1)th 2-dimensional subvector of 0T (see discussion

of equation (G- I)). Then (J-10) and (J-11) combine to give

= [ T (Q1.+- [ [ I (OT-i (T+1 ")- (-e) ) (J-12))

[ST aT1( -1- 3T=l()eTO (Tr)H3 T(7.-i)) (J- 12)

T [ T P v-e T6 1V-

In deriving (J- 12), use was made of the fact, apparent from (J- 11), that 13T (i) =0,r+l(i)

if i < T. To continue,

J-4 -'

IEl



-1B 0 0 0

(J- 13)

[B I+ L1 T +1,

which gives text equation (IV-28b).

Updating the Modified Distribution

The foregoing results will be used to update the modified distribution. It is
assumed that the latter involves only constraints and contact data pertaining to times
preceding tr . Let D denote the information adjustment quantity as in text equation
(IV-10) (see also equation (1-5)) corresponding to such a constraint or contact
datum; conceptually, D should stand for the sum such as is added to in equation

(1-12). Then

B-1

- (+) D
B 

"T 
1

using the fact that the constraint, etc., correspond to times less than tT, this gives

1 0] + L, 
(J- 14)

J- 5



T

which is equation (IV-30a) of the text. Now, let S and T be as in (J-2). Then

examining Proposition G- 1 reveals that

Cr  C S ]

T T

C +1 (C S) T T TCS] (J- 15)

which is text equation (IV-29a). Since S takes the form (J-6), equation (J-15) can

be written in another form. Let V1 and V2 be the 2T x 2 matrices which form the

last four columns of C T , and let w1 , w 1 2 , w2 2 form the lower right-hand 4 x 4

block of CT :

------------------------
[....IV 1 IV2 = 1 11 w 12

T
!w 1 2  w22

Then

CT+ T (J- 16)T = T T+W
Vi

where

V =C S= (1+e )  V1T 2 T

W S CT S= (l+e ) 2  [(I~er T +T TW22-eT )TW12W12 -T W11]

thus continuing the theme of involving only times T - 1, T. and 'r + 1 in the updating
process.

Proposition G-1 also implies that

detC + 1 = (det C T)(det T),

J- 6



whence text equation (IV-31) follows:

K =K + 2log27r + logdetT. (J-17)
T+I. T

Now, if d is the information adjustment quantity of text equation (IV-1) (or
equation (1-6)), or a "sum" such as is added to iT9 In equation (1- 13), then

at, B -1 (+)d

T+1 T+9 i+

= ([ +i 1 3 (+i)+)

( 1+ L8 T  
+) 

d

( ) + L O T3

analogously to (J-14), this gives

T+I1 LO T+1 (J- 18)
+t 0

which together with (J-12), yields text equation (IV-30b).

Next, equations (J-15) and (J-18) combine as follows to give equation (IV-29b)
of the text.

l =C '

,r+1 T+1 T+1

ICr  C S T + L OT 1

(C S)T T+STC T S 1 0

rc 1(J- 19)

T T + C 7 +L&i

J- 7



From (J-12) and (J-15) comes

C L T ] [S ( v -e 6 _-r- T LB+I I 176 PT -I T-
STCT  T+sTc7S

- (6 T 6 T (J-20)

6 T e T T 6 -lV T-1

Since STY = (1+e 7 ) 7 7 (T)-e7 y T (,r -1), equations (J-19) and (J-20) combine to

give the desired result:

'IT+ 1  L ie )y ')+6 P-e (,y (T - i)+ 6 ------ J-(7+1 T ;= ... .. .. .. .. .. ... .. .. .. .. .. ..

The following identity was used in the course of developing equation (J- 12):

r+ ++ 1)- ( + e ),OT (')+e TO (-) 6T T -eT 6 TlVT_ .  (J-22)

Equations (J-21) and (J-22) give

VT+I= Y(7)+6 V n(he )(V ((J-- (23))-e (V ( - )- (7 -1)) 23)
T07 Tf 7. 7. 7. 7.7. 7

Equation (J-23) and a straightforward examination of equations (J-14), (J-15),

(J- 17), and (J-18) show that if the modified distribution coincides with the UPD, then
the formulas just derived to update the modified distribution reduce to those derived
initially to update the UPD.

J-8[



Special Cases

The development in this appendix to this point has assumed that r > 1. The
remainder will consider the special cases Tr = 0 and r = 1. Specifically, the
necessary changes in the foregoing development will be examined.

To begin, Suppose T = 0. Then

B = B= [B H1
T 1 H T bl

where H0 = b0 1 ; B0 = b0 1 , of course, equations(J-2) and (J-3) still hold, but (J-4) is
replaced by

b01 b0 0' h1 boo.

since h01 =0 for all J. Therefore,

S= B HT = b01b01 (J- 24)

replaces (J-6), and

T T

T=K -HTS=b -bT =b -b
. S =11 01 11 00

replaces (J-7). Now equations (J-8) and (J-9) remain valid. However, (J-8) and
(J-24) imply that

L = T- 1[-I Il

L'

(so Q is a 4 x 4 matrix); this and the still valid (J- 11) give

0 [ 0 ),

J-9



a different form of (J-12). Equation (J-13) remains valid.

Turning to the updating of the modified distribution, only a couple of changes

are necessary. Firstly, in order for equation (J-16) to remain valid, the equation
preceding it must be rewritten as

C 0 V2 w 22'

so that

V 0 S- Co

and

W sT c 0 S = C 0

follow. The only other change is that equation (J-23) should be replaced by

YO[1 1 T+I v0 1()

Note that since it is unlikely that a constraint will be imposed before considering the

first time step (such an action would be merely rechoosing an initial distribution),

is most likely.

The case T = 1 requires even fewer modifications. Then equation (J-5) still holds,
T TsinceH T = bl= bl 0 . Then

S T (J-25)

J- 10

* I



T is still given by equation (J-7). The only other changes to note are that

1 ~ 2j

in order for equation (J-16) to remain valid, and that, since S is given by (J-25), L Q

iJ- 11



APPENDIX K

SUMMARY OF A LORITHMS

by David P. Kierstead

This appendix gives a brief description of how the text equations are actually
implemented by SCREEN. The quantities which must be produced are the mean
and covariance matrix of the target's distribution (as predicted from the motion
assumptions and positive contact information).

In some portions of SCREEN it is desirable to know E[(z T  zT T I z0] ,
which may be computed according to the formula

E= E( +Cov z (Var(z 0 )) (z0 -E(z 0 )).

TJ

It is clear that this is a linear equation in z0 , so what are actually computed are
the coefficients of this equation. These are stored as SMEANO and SMEAN1.
Thus, ([1 )

E z SMEAN0 + SMEAN1 • z 0

( n-

In the following summaries, which appear as Tables K-1 through K-4, the
notation of the text and Appendix J Is preserved.

K-1

-. . wr



TABLE K-J

Variable Identity Program Variable (at time (r)

6 length of time step DELTAT

Yt mean target speed TARS records
for times ttot+l 6v 0 .... 6V ;SPDis 6v

rt diffusion covariance TDIFF records
matrix for times 6 2 ro,0 . 6 2r •SPDCOV

t to t+l is 62r

mean number of TARM(2) holds A
course changes per

hour for times
t to t+-l

I /t mean target location TMEAN
at time t

C covariance matrix of SCOVO is cols. for time -- 1

target positions for SCOV1 is cols. for time .

times 0 through r PSPACV is block diag.

T Tiz T T T z
E[(z 1 , .... z 0  mean position, E[(z1,.z 0 J=SMEANO +SMEAN z

conditioned on the
starting position z0

K-2
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TABLE K-2

TIME STEP UPDATE. 7-r 0

(Initialization and Update from Times 0 to 1)

Step Calculations Program Variables

Initialization Input:
6 DELTAT

110 TARM(2)

6V 0  SPD

0 SPDCOV

0 00 TMEAN.SPAPOS,BETN

C0  SPACOV, PSPACV

1 e 1 'exp[-6p 0 1j CSCALE

2 PCi [-W I 0 BET NP1=fl(1)

3 vi* I ITMEAN
4 vacuous

5 C CO~ 2 SC OVO =C (0)
roo 01 SCOV1 = C()

6 SMEANO =-y 1(1) - 'y

SMEAMi = I

K-3



TABLE K- 2_Cont nue

Step Calculations Program Variables

7 Reset auxiliary
quantities to be ready
for next time update:

00 BETNM1

01(l) BETN

6 2 o GAMNM1

W1 W11MAT

w 12 W12MAT

W 22 W22MAT

T '1 TARM(1) 1

K-.

'1 K!l



TABLE K-3

TIME STEP UPDATE, r > 0

(Update from Times T to T + 1)

Step Calculations Program Variables

Input: AT P T r

e+l = exp[-6 T CSCALE

2 -- [ A -+6J BETNPI. 31 (rT-l)
_+1 = '(r )+ • E

3 + = I-----------------------")-en ( -)- - I) TMEAN
T L 7. lf7 ii- 7.' (T))

4 V = (1+e) C T(r)-e C T ( -i) VMAT

W =11+e- )2W22-e1 [(l~e )( T )eWW

2 2 2
T=6 r -e 2 6 r TMAT

7. 7. (.

5-C 7)--

r+11 e )W22-e W 12

C T+l (,+l) =[Ty+V ] Scov1

E+0 [MAN + (T+17+l)-Cov(z+)z 0 )Var(z0)E(z

[01

SMEAN1= SMEANI + -------------

LCov(z . l )z o)Varz 0

K-5



TABLE K-3,jS.oj!.tinuedj_

p. Calculations Program Variables

7 Reset auxiliary quantities to be ready
for next time update:

OT (Tr BETNMI

OT fJ(T 1)BETN

2 GAMNMI
T

w W11MATW11

w W12MAT

w W22MAT

T T7+1 TARM(1)

K-6



TABLE K-4

INCORPORATION OF INFORMATION

Step Calculation_ Program Variables

1 Input:

D ADDMAT
d ADDVEC
t ITSTP2

2 Retrieve (C(t)) T COVnO

3 Compute D(I+CttD) 1  PROD

-1 T
4 C = C-C(t)[D([sC ttD) IC tM SCOVO

SCOVI
PSPACV

5 Compute (I+DC tt) TEMINV

6 =y+C(t)(L+DCtt) ld-C(t)(D(1+CttD) 'Ii (t) TMEAN

K-7
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